A structure preserving flow for computing Hamiltonian matrix exponential

Yueh Cheng Kuo, Wen Wei Lin, Shih Feng Shieh

研究成果: 雜誌貢獻文章

摘要

This article focuses on computing Hamiltonian matrix exponential. Given a Hamiltonian matrix H, it is well-known that the matrix exponential eH is a symplectic matrix and its eigenvalues form reciprocal (λ, 1 / λ¯ ). It is important to take care of the symplectic structure for computing eH. Based on the structure-preserving flow proposed by Kuo et al. (SIAM J Matrix Anal Appl 37:976–1001, 2016), we develop a numerical method for computing the symplectic matrix pair (M, L) which represents eH.

原文英語
頁(從 - 到)555-582
頁數28
期刊Numerische Mathematik
143
發行號3
DOIs
出版狀態已發佈 - 2019 十一月 1
對外發佈Yes

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

指紋 深入研究「A structure preserving flow for computing Hamiltonian matrix exponential」主題。共同形成了獨特的指紋。

  • 引用此