A robust numerical algorithm for computing Maxwell's transmission eigenvalue problems

Tsung Ming Huang, Wei Qiang Huang, Wen Wei Lin

研究成果: 雜誌貢獻期刊論文同行評審

13 引文 斯高帕斯(Scopus)


We study a robust and efficient eigensolver for computing a few smallest positive eigenvalues of the three-dimensional Maxwell's transmission eigenvalue problem. The discretized governing equations by the Nédélec edge element result in a large-scale quadratic eigenvalue problem (QEP) for which the spectrum contains many zero eigenvalues and the coefficient matrices consist of patterns in the matrix form XY-1Z, both of which prevent existing eigenvalue solvers from being efficient. To remedy these difficulties, we rewrite the QEP as a particular nonlinear eigenvalue problem and develop a secant-type iteration, together with an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) method, to sequentially compute the desired positive eigenvalues. Furthermore, we propose a novel method to solve the linear systems in each iteration of LOBPCG. Intensive numerical experiments show that our proposed method is robust, although the desired real eigenvalues are surrounded by complex eigenvalues.

頁(從 - 到)A2403-A2423
期刊SIAM Journal on Scientific Computing
出版狀態已發佈 - 2015

ASJC Scopus subject areas

  • 計算數學
  • 應用數學


深入研究「A robust numerical algorithm for computing Maxwell's transmission eigenvalue problems」主題。共同形成了獨特的指紋。