A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries

Tongtong Li, Gyutae Nam, Kuanting Liu, Jeng Han Wang, Bote Zhao*, Yong Ding, Luke Soule, Maxim Avdeev, Zheyu Luo, Weilin Zhang, Tao Yuan, Panpan Jing, Min Gyu Kim*, Yanyan Song*, Meilin Liu*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

65 引文 斯高帕斯(Scopus)

摘要

The development of anode materials with high-rate capability is critical to high-power lithium batteries. T-Nb2O5 has been widely reported to exhibit pseudocapacitive behavior and fast lithium storage capability. However, the other polymorphs of Nb2O5 prepared at higher temperatures have the potential to achieve even higher specific capacity and tap density than T-Nb2O5, offering higher volumetric power and energy density. Here, micrometer-sized H-Nb2O5 with rich Wadsley planar defects (denoted as d-H-Nb2O5) is designed for fast lithium storage. The performance of H-Nb2O5 with local rearrangements of [NbO6] octahedra blocks surpasses that of T-Nb2O5 in terms of specific capacity, rate capability, and stability. A wide range variation in the valence of niobium ions upon lithiation was observed for defective H-Nb2O5via operando X-ray absorption spectroscopy. Operando extended X-ray absorption fine structure and ex situ Raman spectroscopy analyses reveal a large and reversible distortion of the structure in the two-phase region. Computation and ex situ X-ray diffraction analysis reveal that the shear structure expands along major lithium diffusion pathways and contracts in the direction perpendicular to the shear plane. Planar defects relieve strain through perpendicular arrangements of blocks, minimizing volume change and enhancing structural stability. In addition, strong Li adsorption on planar defects enlarges intercalation capacity. Different from nanostructure engineering, our strategy to modify the planar defects in the bulk phase can effectively improve the intrinsic properties. The findings in this work offer new insights into the design of fast Li-ion storage materials in micrometer sizes through defect engineering, and the strategy is applicable to the material discovery for other energy-related applications.

原文英語
頁(從 - 到)254-264
頁數11
期刊Energy and Environmental Science
15
發行號1
DOIs
出版狀態已發佈 - 2022 1月

ASJC Scopus subject areas

  • 環境化學
  • 可再生能源、永續發展與環境
  • 核能與工程
  • 污染

指紋

深入研究「A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries」主題。共同形成了獨特的指紋。

引用此