A dynamic hierarchical fuzzy neural network for a general continuous function

Wei Yen Wang, I. Hsun Li*, Shu Chang Li, Men Shen Tsai, Shun Feng Su

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

A serious problem limiting the applicability of the fuzzy neural networks is the "curse of dimensionality", especially for general continuous functions. A way to deal with this problem is to construct a dynamic hierarchical fuzzy neural network. In this paper, we propose a two-stage genetic algorithm to intelligently construct the dynamic hierarchical fuzzy neural network (HFNN) based on the merged-FNN for general continuous functions. First, we use a genetic algorithm which is popular for flowshop scheduling problems (GA_FSP) to construct the HFNN. Then, a reduced-form genetic algorithm (RGA) optimizes the HFNN constructed by GA_FSP. For a real-world application, the presented method is used to approximate the Taiwanese stock market.

原文英語
主出版物標題2008 IEEE International Conference on Fuzzy Systems, FUZZ 2008
頁面1318-1324
頁數7
DOIs
出版狀態已發佈 - 2008
事件2008 IEEE International Conference on Fuzzy Systems, FUZZ 2008 - Hong Kong, 中国
持續時間: 2008 6月 12008 6月 6

出版系列

名字IEEE International Conference on Fuzzy Systems
ISSN(列印)1098-7584

其他

其他2008 IEEE International Conference on Fuzzy Systems, FUZZ 2008
國家/地區中国
城市Hong Kong
期間2008/06/012008/06/06

ASJC Scopus subject areas

  • 軟體
  • 理論電腦科學
  • 人工智慧
  • 應用數學

指紋

深入研究「A dynamic hierarchical fuzzy neural network for a general continuous function」主題。共同形成了獨特的指紋。

引用此