A Cyber-Physical Testbed for IoT Microgrid Design and Validation

Yih Shiuan Lee, Chao Wang*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

Microgrids are small power systems, often equipped with renewable energy sources, that are alternatives or supplementary to utility grids. Many studies have been conducted on the design and implementation of microgrids and their interconnects to utility grids, and investigations have been extended to the use of Internet of Things technology (IoT) to monitor and operate such power grids. However, the broad applications of the IoT technology itself also call for a green energy solution. This paper investigates how to power local IoT applications via an integration of a microgrid and the utility grid. Together, we call such a system an IoT microgrid. The goal of an IoT microgrid is to maintain the availability of IoT applications while saving energy costs, and this is achieved by sustaining IoT applications via local renewable energy from a microgrid and by mitigating the intermittent power supply using the utility grid. This paper characterizes the IoT microgrid and proposes a configurable cyber-physical testbed for its design and validation. The testbed incorporates the hardware-in-the-loop (HIL) approach, where real-time simulation is integrated with physical elements for quick prototyping of those components in an IoT microgrid. The paper concludes with an example implementation of the proposed testbed, which demonstrates its use for validating both an IoT microgrid and the IoT application it sustains.

原文英語
文章編號1181
期刊Electronics (Switzerland)
13
發行號7
DOIs
出版狀態已發佈 - 2024 4月

ASJC Scopus subject areas

  • 控制與系統工程
  • 訊號處理
  • 硬體和架構
  • 電腦網路與通信
  • 電氣與電子工程

指紋

深入研究「A Cyber-Physical Testbed for IoT Microgrid Design and Validation」主題。共同形成了獨特的指紋。

引用此