TY - JOUR
T1 - A compensation model for an NDIR-based CO2 sensor and its energy implication on demand control ventilation in a hot and humid climate
AU - Teng, Tun Ping
AU - Chen, Wei Jen
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/2/15
Y1 - 2023/2/15
N2 - Non-dispersive infrared absorption spectroscopy (NDIR)-based CO2 sensors currently dominate the market for building applications. Yet, the affordable ones are frequently found to have a reading that deviates from the actual CO2 concentration, which hinders the proper operation of the demand control ventilation (DCV). This study aims to propose a compensation method to mitigate the CO2 sensor deviation due to water vapor interference. Its energy implication is simulated afterward by creating a 464 m2 office space model equipped with the DCV in EnergyPlus. Per the results of multiple standard gas experiments performed in a controlled environment, the proposed model has a coefficient of determination R2=0.899, and is able to reduce the normalized root mean square error from 8.1 % (before compensation) to 2.6 % (after compensation) for a selected NDIR CO2 sensor, showing a 67.9 % reduction. Meanwhile, the tested sensor is originally prone to underestimate the CO2 concentration, leading to less ventilation rate in DCV. As a result, there will be a 6.97 % increment in the annual ventilation electricity load of the modeled building after compensation, but in exchange for a better controlled indoor CO2 concentration that was underestimated by 3.0 to 13.1 % (on average 7.9 %) depending on zone conditions before compensation.
AB - Non-dispersive infrared absorption spectroscopy (NDIR)-based CO2 sensors currently dominate the market for building applications. Yet, the affordable ones are frequently found to have a reading that deviates from the actual CO2 concentration, which hinders the proper operation of the demand control ventilation (DCV). This study aims to propose a compensation method to mitigate the CO2 sensor deviation due to water vapor interference. Its energy implication is simulated afterward by creating a 464 m2 office space model equipped with the DCV in EnergyPlus. Per the results of multiple standard gas experiments performed in a controlled environment, the proposed model has a coefficient of determination R2=0.899, and is able to reduce the normalized root mean square error from 8.1 % (before compensation) to 2.6 % (after compensation) for a selected NDIR CO2 sensor, showing a 67.9 % reduction. Meanwhile, the tested sensor is originally prone to underestimate the CO2 concentration, leading to less ventilation rate in DCV. As a result, there will be a 6.97 % increment in the annual ventilation electricity load of the modeled building after compensation, but in exchange for a better controlled indoor CO2 concentration that was underestimated by 3.0 to 13.1 % (on average 7.9 %) depending on zone conditions before compensation.
KW - Carbon dioxide
KW - Demand control ventilation
KW - Indoor air quality
KW - NDIR (Non-Dispersive Infrared)
UR - http://www.scopus.com/inward/record.url?scp=85145256769&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145256769&partnerID=8YFLogxK
U2 - 10.1016/j.enbuild.2022.112738
DO - 10.1016/j.enbuild.2022.112738
M3 - Article
AN - SCOPUS:85145256769
SN - 0378-7788
VL - 281
JO - Energy and Buildings
JF - Energy and Buildings
M1 - 112738
ER -