TY - JOUR
T1 - A class of interior proximal-like algorithms for convex second-order cone programming
AU - Pan, Shaohua
AU - Chen, Jein Shan
PY - 2008/6
Y1 - 2008/6
N2 - We propose a class of interior proximal-like algorithms for the second-order cone program, which is to minimize a closed proper convex function subject to general second-order cone constraints. The class of methods uses a distance measure generated by a twice continuously differentiable strictly convex function on (0, +00), and includes as a special case the entropy-like proximal algorithm [Eggermont, Linear Algebra Appl., 130 (1990), pp. 25-42], which was originally proposed for minimizing a convex function subject to nonnegative constraints. Particularly, we consider an approximate version of these methods, allowing the inexact solution of subproblems. Like the entropy-like proximal algorithm for convex programming with nonnegative constraints, we, under some mild assumptions, establish the global convergence expressed in terms of the objective values for the proposed algorithm, and we show that the sequence generated is bounded, and every accumulation point is a solution of the considered problem. Preliminary numerical results are reported for two approximate entropy-like proximal algorithms, and numerical comparisons are also made with the merit function approach [Chen and Tseng, Math. Program., 104 (2005), pp. 293-327], which verify the effectiveness of the proposed method.
AB - We propose a class of interior proximal-like algorithms for the second-order cone program, which is to minimize a closed proper convex function subject to general second-order cone constraints. The class of methods uses a distance measure generated by a twice continuously differentiable strictly convex function on (0, +00), and includes as a special case the entropy-like proximal algorithm [Eggermont, Linear Algebra Appl., 130 (1990), pp. 25-42], which was originally proposed for minimizing a convex function subject to nonnegative constraints. Particularly, we consider an approximate version of these methods, allowing the inexact solution of subproblems. Like the entropy-like proximal algorithm for convex programming with nonnegative constraints, we, under some mild assumptions, establish the global convergence expressed in terms of the objective values for the proposed algorithm, and we show that the sequence generated is bounded, and every accumulation point is a solution of the considered problem. Preliminary numerical results are reported for two approximate entropy-like proximal algorithms, and numerical comparisons are also made with the merit function approach [Chen and Tseng, Math. Program., 104 (2005), pp. 293-327], which verify the effectiveness of the proposed method.
KW - Measure of distance
KW - Proximal method
KW - Second-order cone
KW - Second-order cone-convexity
UR - http://www.scopus.com/inward/record.url?scp=67649551067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649551067&partnerID=8YFLogxK
U2 - 10.1137/070685683
DO - 10.1137/070685683
M3 - Article
AN - SCOPUS:67649551067
SN - 1052-6234
VL - 19
SP - 883
EP - 910
JO - SIAM Journal on Optimization
JF - SIAM Journal on Optimization
IS - 2
ER -