TY - GEN
T1 - A carbon nanotube gas sensor using CMOS-based platform
AU - Tian, Wei Cheng
AU - Kuo, Chun Yen
AU - Hsieh, Chang Jung
AU - Lu, Hung Ling
AU - Lu, Chia Jung
PY - 2011
Y1 - 2011
N2 - A complementary metal-oxide-semiconductor (CMOS)-based gas sensor platform using a commercially available 0.35 μm CMOS process and the microelectromechanical systems (MEMS) post process was developed in this work. An n-type polysilicon microheater with ∼2 kΩ and a metal thermometer with ∼1 kΩ were integrated within this platform to provide a temperature programming for sensing film preparations and sensor characterizations. After the standard CMOS process, a freestanding micro hotplate was fabricated via an isotropic silicon dry etching. The rapid thermal response (<1 s) and an uniform heating distribution (100°C, standard deviation of 1°C) of this sensor platform were demonstrated. The sensing material was prepared with the mixing of commercially available single-walled carbon nanotubes (SWCNTs) and an organic solvent. Our sensors were tested with three compounds (Octane, Butanol, and Butylacetate) and the good linearity and fast response time (<5 s) were demonstrated. The great sensor sensitivities of the three compounds were obtained (Octane: 0.329 ppm/ppm, Butanol: 0.522 ppm/ppm, and Butylacetate: 0.683 ppm/ppm) at a high concentration range (>1K ppm) and could be used to enhance the specificity of the SWCNTs-based gas sensor.
AB - A complementary metal-oxide-semiconductor (CMOS)-based gas sensor platform using a commercially available 0.35 μm CMOS process and the microelectromechanical systems (MEMS) post process was developed in this work. An n-type polysilicon microheater with ∼2 kΩ and a metal thermometer with ∼1 kΩ were integrated within this platform to provide a temperature programming for sensing film preparations and sensor characterizations. After the standard CMOS process, a freestanding micro hotplate was fabricated via an isotropic silicon dry etching. The rapid thermal response (<1 s) and an uniform heating distribution (100°C, standard deviation of 1°C) of this sensor platform were demonstrated. The sensing material was prepared with the mixing of commercially available single-walled carbon nanotubes (SWCNTs) and an organic solvent. Our sensors were tested with three compounds (Octane, Butanol, and Butylacetate) and the good linearity and fast response time (<5 s) were demonstrated. The great sensor sensitivities of the three compounds were obtained (Octane: 0.329 ppm/ppm, Butanol: 0.522 ppm/ppm, and Butylacetate: 0.683 ppm/ppm) at a high concentration range (>1K ppm) and could be used to enhance the specificity of the SWCNTs-based gas sensor.
UR - http://www.scopus.com/inward/record.url?scp=84856853167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856853167&partnerID=8YFLogxK
U2 - 10.1109/ICSENS.2011.6127097
DO - 10.1109/ICSENS.2011.6127097
M3 - Conference contribution
AN - SCOPUS:84856853167
SN - 9781424492886
T3 - Proceedings of IEEE Sensors
SP - 1036
EP - 1039
BT - IEEE Sensors 2011 Conference, SENSORS 2011
T2 - 10th IEEE SENSORS Conference 2011, SENSORS 2011
Y2 - 28 October 2011 through 31 October 2011
ER -