摘要
本文探討分類不一致對自動分類成效的影響。經由近似文件的自動偵測,以及兩種分類方法針對兩個測試文件集做的比較實驗,本文發現:訓練資料的分類不一致性,即使高達34%,幾乎也不會影響分類器的成效。此項發現,其重要的意涵是,即使過去的研究使用了一致性不高的測試集做實驗,其結論仍舊是有效的。當然,分類不一致性高的資料,拿來訓練後,不管分類器好壞,其得到的分類成效都是比較低的。除了以上發現外,本文也介紹了一套中文分類測試集,免費提供各界研究使用。另外,作者也提出了一套偵測複本或相似文件的可靠方法,與過去的方法比較,此方法可以偵測過去方法所無法偵測到的相似文件。
原文 | 繁體中文 |
---|---|
頁(從 - 到) | 2-19 |
頁數 | 18 |
期刊 | 大學圖書館 |
卷 | 9 |
發行號 | 1 |
出版狀態 | 已發佈 - 2005 |
Keywords
- 文件分類
- 一致性
- 分類測試集
- 主題分析
- 複本偵測
- Document classification
- Consistency
- Test collection for categorization
- Subject analysis
- Duplicate detection