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> In this report, we are concerned with the 2-tuple total

domination number $\gamma_{\times2, t}(H {m, n})$ of Harary
graphs $H_{m, n}$, where $m$ is odd. We complete the
analysis for $m=3$, and give some result for $m=5$. For $m$
large enough, we show that there exists $m$-regular graphs
whose 2-tuple total domination number matches the lower
bound of $\lceil 2n/m\rceil$.
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Abstract

In this report, we are concerned with the 2-tuple total domination number yx2 ¢(Hpm )
of Harary graphs H,, ,,, where m is odd. We complete the analysis for m = 3, and give some
result for m = 5. For m large enough, we show that there exists m-regular graphs whose

2-tuple total domination number matches the lower bound of [2n/m].
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1 Introduction

Given a graph G, a vertex subset is a k-tuple total dominating set if every vertex has at least
k neighbors in the set, and the size of a minimum k-tuple total dominating set (KTDS for
abbreviation) is called the k-tuple total domination number of G. The notion of k-tuple total
domination was proposed by Henning and Kazemi [3] in 2010, and some results of this problem
were proposed recently. This project is proposed due to the work of Kazemi and Pahlavsay [6].
They are concerned with the problem with k£ = 2, where the problem is also called the double
total domination problem. They gave upper bounds on the double total domination number of
Harary graphs, by a standard constructive way. However, for some cases, there is still a gap of
1 between the given upper bound and a known lower bound. This motivates us to propose this

project. In the next section, we give a brief survey for this problem.

1.1 Previous results of the k-tuple total domination problem

We start with the k-tuple total domination problem, and then get into the specific work
of Kazemi and Pahlavsay [6]. The k-tuple total domination was proposed by Henning and
Kazemi [3] in 2010. In their paper, they gave some results for general graphs. In particular,
they consider the class of complete p-partite graphs and the k join of graphs.! Later on, they

gave some results on the product of graphs. We summarize the known results in Table 1.

Henning and Kazemi [4] gave a lower bound on 7y, which is widely applied in the subse-

quent research. We summarize it in Proposition 1.

Proposition 1 (Henning and Kazemi [4]). Let G be a graph of order n, and let A and § be the

mazimum and minimum degree of G, respectively. If 6 > k, we have
kn
G)>|—|.
yeual©) 2 | |

Usually, the k-tuple total domination problem serves as a generalization of the total dom-
ination problem, i.e. the k-tuple total domination problem with & = 1. To make the work
nontrivial, k is assumed to be at least two, and the case in which k = 2, the double total
domination problem, is usually independently discussed. Related results are summarized in
Table 2.

Recently, Pradhan [9], and Lan and Chang [8] investigated the problem from an algorithmic
viewpoint. The complexity of computing the k-tuple total domination number on different graph

classes are conducted. Results are shown in Table 3.

'The k join of graphs G and H is a graph obtained from the disjoint union of G and H with each vertex of G

joining at least k vertices of H.
2The complementary prism of a graph G is the graph formed from the disjoint union of G and its complement

G by adding the edges of a perfect matching between the corresponding vertices of G and G.



Table 1: Previous results for the k-tuple total domination problem.

Authors Year Graph class Results
Henning, 2010 general Yxkt(G) = T(Heg)
Kazemi [3]
Ykt (G) < (p + 3 (k=) ())p'(1 - p)‘”) n,
0<p<l1
fixed k, sufficiently x4 (G) < (Inéd+ (k—1+o0(1))Inlnd)n/é
large 0
k join of a graph and &k +1
K11
complete p-partite, yxx:(G)=k+1
p>k+1
complete p-partite, yxp:(G) =k +2
p==k
complete p-partite, vxi(G) = [kp/(p—1)]
ni > [kp/(p — 1)1,
p<k
Kazemi [5] 2011 complementary the number differs according to the size of
prisms of complete the partite sets.
p-partite graphs?
Henning, 2012 product of complete vyxp+(G) = k+2,ifn > k+2; k4 3 if
Kazemi [4] m- and n-partite n=~k+1
graphs
K,, x K, Yxkt(G) = k+2,ifn > k+2; k+3if

n==k+1

1.2 Double total domination on Harary graphs

A Harary graph H,, , is defined depending on two positive integers m and n with m < n. The

vertex set of H,, , is the integers, ranging from 1 to n, and the edge set is defined depending on

the parities of m and n. Usually, it is convenient to define the graph from a geometric viewpoint.

The n vertices are placed around a circle, equally spaced. If m is even, each vertex is adjacent to

its closest m vertices. Otherwise, if n is even, each vertex is adjacent to its closest m — 1 vertices

and to its diametrically opposite vertex. If both n and m are odd, each vertex is adjacent to its

3Given n#0 mod 4 and m # 0

a(m,n) =

mod 4,

m(n+1)
2 ’

n(m+1)
P} ’

m(n+2)
P} )

if n is odd,
if n=2 mod 4, m is odd, and n < 2m,

otherwise.



Table 2: Previous results for double total domination problem.

Authors Year Graph class Results
Henning, 2010 general Yx2,4(G) < (In(0 +2) +Ind+1)n/o
Kazemi [3]

A(G) <2 Ye24(G) =
bipartite graphs with a  vx2:(G) < 9n/10
partite set of vertices of

minimum degree

cubic bipartite Yx2,t(G) < 8n/9
Kazemi [5] 2011 complementary prism yx2:(G)=n+2,n>5

of cycles
Henning, 2012 C,, x C, Yx24(G) = mn/2, if m = n = 0
Kazemi [4] mod 4; vx2+(G) < a(m,n), otherwise?
Kazemi, 2016 Harary graphs See Sec. 1.2

Pahlavsay [6]

closest m — 1 vertices, and for a specific set of consecutive n + 1 vertices, say 1 to n + 1, each of

them has a clockwise n-step neighbor. An example is given in Figure 1.

A Harary graph H,,, is an m-connected graph of order n with the minimum number of
edges [2]. On Harary graphs, Kazemi and Pahlavsay [6] gave the following results for the double

total domination problem.

Theorem 1 (Kazemi and Pahlavsay [6]). If both m and n are even, then

2n
'7><2,t(Hm,n) — ’7-‘ .
m

If m is odd and n is even, then

2n 2n
[-‘ < vx2t(Hmp) < [-‘ + 1.
m m

If both m and n are odd, then

Pn—l

2n—1
-‘ < 'YXQ,t(Hm,n) < ’V -‘ + L
m

m

The theorem was derived as follows. The number ~yx2 ¢(Hyy, ) is lower bounded using Proposi-
tion 1. For the upper bound, Kazemi and Pahlavsay applied two strategies to build a double

total dominating set:
e Each vertex is dominated by its clockwise/counterclockwise neighbor within m/2 steps.

e Some of the chosen vertices are dominated by their diametrically opposite neighbors.



Table 3: Algorithmic results for the k-tuple total domination problem.

Authors Year Graph class Results
Pradhan [9] 2012 split graphs NP-c
doubly chordal graphs  NP-c
bipartite graphs NP-c, APX-c for A(G) = k+2

chordal bipartite graphs P

split graphs NP-complete
Lan, Chang [8] 2014 each block is a clique, a linear time

cycle, or a complete bi-

partite graph

undirected path graph  NP-c

For the two kinds of double total dominating sets, the one with fewer vertices gives the upper
bound. We note here that if m and n satisfy certain conditions, the upper bound matches the

lower bound.* However, for succinctness, we omit the details.

2 Results on Harary graphs

We give the exact values for vyx2¢(Hs2y,) and yx2.+(H3 25,+1) in Sections 2.3 and 2.2, respectively,

In the following, we write n as 2n and 2n+1 to emphasize that n is even and odd, respectively.

2.1 Even n and m=3

Kazemi and Pahlavsay [6] gave the following result.?

Proposition 2 (Kazemi and Pahlavsay [6]). Let 2n = 3¢ + r with r < 3. Then

4n 4n
[3-‘ < yx2,(Hs2n) < [3-‘ + 1.

In particular, yx2,:(Hsz2n) = [%"] if r # 1.

To complete the analysis of vx2(H32y), we assume r = 1. Let S be a 2TDS of Hs,. By

Proposition 2,

15| > Ww _ [2“2} EPYNEY

The following lemma gives a necessary condition for |S| = 2¢ + 1.

Lemma 2. Assume that 2n = 30+1. If|S| = 20+ 1, then there is exactly one vertex v satisfying
INw)NS|=3 andv e V\S.

4Please refer to Theorems 2.3 and 2.4 in [6].
®The result given by Kazemi and Pahlavsay is more general, namely, for Hopm 11,2, with m < n. For succinctness

we summarize the case 2m + 1 = 3 only.



Proof. Since 2-2n < 3- (20 4 1), there exists exactly one such vertex v. Consider the subgraph
induced by S. By the handshaking lemma, v ¢ S. O

Based on Lemma 2, we develop the following theorem.
Theorem 3. Assume 2n =3¢+ 1. Then

20+1, iff=1 mod 4,
Vx2,t(H32n+1) =
20+2, if¢{=3 mod 4.

2.1.1 Proofs

Lemma 4. Assume 2n = 3¢+ 1 and n > 8. Let S and S’ be 2-tuple total dominating sets of

Hj 9, and Hs 2,12, respectively. Then
S| =20+1 = |S'|=20+1.
Proof. Without loss of generality, let 2n ¢ S and |N(2n) N S| = 3. Then n € S. Moreover,
Sn{i,n+i: 1<i<7}={1,2,3,4,7,n+1,n+4,n+5n+6,n+ 7}
S induces a 2TDS of Hj 3,12 by removing the 12 vertices, {i,n +1i: 1 <i < 6}. O
Lemma 5. For 2n =30+1 and { =3 mod 4, yx2:(Hsz2n) = 20 + 2.

Proof. By Proposition 5, it suffices to show vyx2(Hs2n) # 20+ 1. Let £ = 4k + 3 for kK > 0. We
prove by induction on k. The inductive step is shown in Lemma 4. We verify the base case in

the following. Namely, we claim yx2(H3,10) # 7.

Suppose that there is a 2TDS S of size 7. Assume without loss of generality that 10 € S.
Then
{1,5,9} CS = {4,6} CS = {3,7}NnS=0 = |N(2)NnS| < 2,

a contradiction. ]
Lemma 6. For 2n =3(+1 and { =1 mod 4, yx2(Hs2n) =20 + 1.

Proof. Let S be the requested 2TDS, and let 2n be the vertex v with |[N(v) N S| = 3. Then

-2 -2
S:{Gk}—i—i: 1§i§4,0§k‘<n6}U{n+6k+i: 4§i§7,0§k<n6 }
U{n—1,n,n+1}.

It can be easily verified that S is a 2TDS and |S| = 2¢ + 1. O



2.2 Odd nand m=3

From Proposition 1, the 2-tuple total domination number of Ho,41,2,+1 is bounded below by

2n+1
m+1 -

total dominating set of Hoyq1,2n41. Then

The bound can be improved according to the following inequality. Let S be a 2-tuple

IS|-(2m+1)+1>2-(2n+1), (1)

and thus

H) >
vt 2 |5

Similar to yx2+(Hs2y), Kazemi and Pahlavsay [6] gave the following result.f

4n+1-‘

Proposition 3 (Kazemi and Pahlavsay [6]). Assume 2n + 1 =3¢+ r with r < 3.

dn +1
3

dn+1
—‘ < yx2,4(H32n+41) < { 3 w + 1.

In particular, yx2,(Hs2n+1) = (%] ifr=1.

Proposition 4 (Yang and Wang [12]). Assume 2n + 1= 3(. Then vx21(H32n+1) = (47173“}

Note that [%] = 2(+1. To complete the analysis of vx2 +(H3 2n+1), it remains to consider
2n + 1 = 3¢ 4 2. The result we develop is stated in Theorem 7.

Theorem 7. Assume 2n+ 1= 3¢+ 2. Then
Vx2,4(H39n41) = 20+ 1.
First, consider vertex n + 1, i.e. the vertex with degree 4.
Lemma 8. Assume 2n+1 =30+ 2. Let S be a 2-tuple total dominating set of H32p+1. Then
S| =2(+1 = n+1€S.
Proof. Otherwise, 3 - |S| < 4n + 2, a contradiction. O
Specifically, a 2-tuple total dominating set exists only if
Ve IN()NS|=2. (2)

The proofs are based on the necessity established above.

2.2.1 Proofs of Theorem 7

Proof. Let

-2
S={l,n+1,2n+1}U{3k+in+3k+i: 1<k< ”3 vie{0,1}).

S is a 2-tuple total dominating set of size 2¢ + 1. See also Fig. 1.

5As mentioned previously, their result is more general.
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Figure 1: The labelling principle and a minimum 2TDS of Hj 1;.

2.3 Evennand m=5

We write 2n = 5¢ 4+ r with 0 < r < 5. Kazemi and Pahlavsay [6] proved the following.

Proposition 5 (Kazemi and Pahlavsay [6]). Let 2n = 5 + r with r < 5. Then

4n 4n
[5-‘ < Yx2,(Hs2n) < {5-‘ + 1.

In particular, yx2.¢(Hs2n) = (%"1 ifr=0o0r2<r<h5.

Note that [%”] =20+ 1.

To derive the exact value of yx2+(Hs 2y ), it remains to consider the cases r = 1 and r = 2.

From Proposition 5, we derive the following.

Proposition 6. Let D be a 2TDS of Hs 9, with 2n =50+ 1r and 1 < r < 2. If |D| = 2¢ +1,
then
HueV: |[N(u)nD| =2} >2n-—3.

Moreover, there is a vertex x € V '\ D such that |N(z) N D| = 3. In particular, when r = 2 the

verter x 1s unique.

Proof. The first part of the proposition can be proved using double counting, as how Proposi-
tion 5 is proved. In addition, by considering the subgraph induced by D, it can be derived that
at least one vertex of degree 3 or 5 is in V'\ D. To prove the proposition, it suffices to verify that
deg(z) # 5. Suppose to the contrary that deg(x) = 5. Without loss of generality, let z = n + 1.
There is only one set of vertices, the black ones in the following figure, that can be the 2TDS.

2n 1 2
® L
*—© *—©
ntl  n-1



Note that when deg(z) = 5, all the other vertices are of degree 2. However, the existence of a

requested 2TDS leads to the existence of vertices of degree 3 (vertices 2 and 2n in the figure). [

In the following, for a 2TDS D we call the vertices z with |N(z) N D| > 2 the singular

vertices.
2.3.1 r=2

Lemma 9. For 2n =50+ 2, yx2+(Hs2n) = 20 + 2.

Proof. Suppose to the contrary that vx2:(Hs2n) = 20 + 1. By Proposition 6 there is a unique
singular vertex x, with x € V' \ D and |[N(x) N D| = 3. Without loss of generality assume
that © = n 4+ 1. Because of symmetry, it suffices to consider the six cases, with black vertices

indicating the members of D:

{L,n,n+2} € D {1,n+2,n+3} € D {1,n—1,n+2} € D
1 1 1
n—1 n n+l1n+2 nt+3 n—1 n n+ln+2 n+3 n—=1 n n+ln+2 n+3
{l,n—-1,n+3} C D {n—1,n4+2,n+3} C D {n,n+2,n+3} €D
1 1 1
n—1 n n+l n+2 n+3 n—1 n n+l n+2 n+3 n—1 n n+l n+2 n+3
In either case, there will be an additional vertex y with |[N(y) N D| = 3. O

232 r=1

Recall that 2n = 5¢ + 1. The smallest case is Hs s = K¢, and yx2,(Hs6) =20 +1 = 3. As we
show below, this is the only case in which yx2¢(Hs 2, = 20+ 1. In the following, we assume that

¢ is an odd number greater than or equal to 3, and show that yyx2(Hs2,) = 20 + 2.

Let D be a 2TDS, and suppose to the contrary that |D| = 2¢ + 1. By Proposition 6, there
is a vertex v satisfying |N(v) N D| = 3. Without loss of generality, we assume that v = n + 1,
as the six cases depicted in the proof of Lemma 9. It can be verified that |N(1) N D| # 4 by an
immediate case-by-case analysis. Thus it remains to consider |[N(1)ND| =2 and |[N(1)ND| = 3.
Below is an illustration for N(1)ND = {2,2n}, in which squared vertices indicate those violating

Proposition 6.

10



ntl  nt+2
1 2 1 2
n+l n+2 n+1 n+2
1 2
B U5

Remark 1. The analysis for [N(1) N D| =2 and |[N(1) N D| = 3 is still done by enumerating
all possibilities and analyze case by case. The whole process is tedious, so we do not include it
here. Details can be found in [10,11].

The only case that needs a nontrivial analysis is given in Lemma 10.

Lemma 10. Let D be a 2TDS of Hs oy, where 2n = 50 + 1 and ¢ is an odd number at least
3. If D] =2(+1 and n+1 ¢ D with |[N(n+ 1)| = 3, then, in a symmetric manner, 1 ¢ D,
N(1)={2,3,2n—1}, and N(n+1) ={n—2,n+2,n+ 3}.

By Lemma 10, we may prove that Hs o, = 2¢ + 2 for ¢ > 3, which is done by induction on

the number of vertices. We start with the induction basis.
Lemma 11. v,2:(H516) = 8.

Proof. By Proposition 6 it suffices to show that yx2¢(Hs16) # 7. Suppose to the contrary
that yx2+(Hs16) = 7. Let D be a minimum 2TDS of Hj 16 with, without loss of generality,
vertex 9 having three neighbors in D. It can be derived that vertex 1 has three neighbors in D
also. Let N(1)ND = {2,3,15} and N(9)ND = {7,10,11}. Since every vertex has degree 5 and
IN(u)ND| =2 for u € V(Hz10)\{1,9}, the vertex z is the uniquely singular and |N(u)ND| = 3,

we have

wep X y¢p
2.3)ep X 15612 ¢D
3,100ep ) 13¢p

7ep T 14ep.

Clearly, this leads to the fact that 12 ¢ D and |N(12)ND| = |{4,10, 11,14}| = 4, a contradiction.
Thus, vx2,:(Hs,16) = 8. O



Lemma 12. For 2n =50+ 1, yx24(Hs2,) = 20+ 2.

Proof. By Lemma 11, this holds for £ = 3. Let n be the least number such that vx2(Hs 2n+10) =
2(¢ +2) + 1. By Lemma 10 the elements in the corresponding 2TDS of Hs 2,410 are the black
dots in the following figure.

Note that by removing the vertices in the dashed-square, and adding the edges {1, 7}, {1, 8},
{n+1,n+7}, {n+1,n+38}, {2n,7} and {n — 1,n + 7}, we have the graph Hs ,, with black
dots forming a 2TDS of size 2¢ 4+ 1, which is a contradiction. O

3 Double total domination on regular graphs

Given a simple undirected graph G, consider the neighborhood hypergraph of G. Namely, the
hypergraph (V, F') with V' = V(G) and

F={N(): veV(G)},

where N (v) is the open neighborhood of v in G. A transversal T of a hypergraph H is a vertex
subset such that for A € F;, TN A # @. For the double total domination problem (i.e. the
2-tuple total domination problem) it asks for the minimum transversal 7" satisfying |70 A| > 2

for every A € F.

A k-coloring of a hypergraph H = (V, F') is a mapping f: V — [k]. For a k-coloring f, an
edge A is monochromatic if |f(v): v € A| = 1. A coloring of hypergraph H is proper if no edge
of H is monochromatic. Finding the minimum transversal of a hypergraph H can be interpreted

as finding a specific proper k-coloring of H.

Note that in the Harary graph H,,,. The neighborhood hypergraph is m-uniform and

m-regular. Moreover, each edge intersects exactly 2m — 1 other edges.

3.1 Probabilistic analysis — the first attempt

Our attempt is to apply Lovasz local lemma to see under which conditions there exists an

2n-vertex (2m + 1)-regular graph that has the double total domination number [4n/(2m + 1)].

Theorem 13 (Asymmetric Lovész local lemma []). Let A = {A1,...,A,} be a finite set of
events. For A € A let I'(A) denote set of events such that A ¢ T'(A) and events in A\T'(A) are

mutually independent. If there exists an assignment of reals x : A — [0,1) such that

VAe A:Pr(A) <x(A) J[ (1-2(B)
BET(A)

12



then Pr (EA e Afn) > Hie{17,,_7n}(1 —x(4;)).

Theorem 14 (Symmetric Lovasz local lemma []). Ifep(d+1) < 1, where e is the base of natural

logarithms, then the probability that none of the events occurs is nonzero.

Let f: V — [k] be a coloring, and let color 1 denote the membership to the double total
dominating set. Namely, f(v) = 1 if and only if v is a member of the corresponding double total
dominating set. We color the vertices using k colors uniformly at random. Let A; be the event
in which

v e Fy: f(v) =1] #2.

<R

Let p = Pr(A4;). If ep(d +1) < 1, where A; is mutually independent to all but at most

Let £ =2m + 1. Then

d events, then Lovdsz local lemma shows that Pr(NA;) > 0. Here d = 2z — 1. However, for

e (1 - <;> 21— q)f‘—2> (2z) > 1.

The Lovész local lemma does not apply to this situation.

0<gxl1

The probability to the individual event A; is too large. (It approaches to 1 as x goes to
infinity.)

3.2 Probabilistic analysis with union bound

We now consider the probability space of choosing 2¢ 4+ 1 vertices from the 2n vertices. Recall
that 2n = (2m + 1)+ r, with 0 < r < 2m. Let A; be the event that less than two neighbors of

vertex ¢ are chosen. Then for i € [2n]

3 e + )

(011)

When 2n and 2m+1 are large and close enough, the inequality holds (e.g. 2n = 60, 2m+1 = 57).

Experimental results shows the following.

Observation 1. When n and m are close enough,

1€[2n]

A necessary condition when Eq. (3) holds is 2n/(2m + 1) < 2.

13



4 Conclusion

We complete the analysis for H3 y, and some cases for Hs n. The results are summarized as

follows.
(i) For N =2n and 2n = 30 +r,

[ +1, ifr=1and £ =3 mod 4
Vx2,t(Hz2n) =
[dn7 otherwise.

(ii) For N =2n+ 1,

4n+1-‘

V2,4 (H32n41) = { 5

(iii) For N =2n and 2n = 5¢ +r,

[%”1—!—1, ifr=1orr=2
Vx2,t(Hs 2n) =
(47, otherwise.

For an n-vertex, m-regular graph, if m is large enough, we conjecture that the double total
domination number matches the lower bound of [2n/m]. Sufficient conditions for the existence

of such a graph will be conducted as a future work.
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