科技部補助專題研究計畫報告

Harary圖上的 k元全支配問題(第3年)

報告類別:成果報告計畫類別:個別型計畫

計 畫 編 號 : MOST 106-2221-E-003-039-MY3 執 行 期 間 : 108年08月01日至109年07月31日 執 行 單 位 : 國立臺灣師範大學資訊工程系(所)

計畫主持人: 王弘倫

計畫參與人員: 碩士班研究生-兼任助理:郭之淇

碩士班研究生-兼任助理: 吳嘉雯碩士班研究生-兼任助理: 張皓博碩士班研究生-兼任助理: 吳宜哲碩士班研究生-兼任助理: 鍾淇翔碩士班研究生-兼任助理: 李松展碩士班研究生-兼任助理: 梁翌菖

本研究具有政策應用參考價值:■否 □是,建議提供機關 (勾選「是」者,請列舉建議可提供施政參考之業務主管機關) 本研究具影響公共利益之重大發現:□否 □是

中華民國 109 年 11 月 15 日

中文摘要:我們研究 Harary 圖 \$H_{m, n}\$ 上的二元全支配數。我們完成了\$m=3\$ 之分析,並給了部分 \$m=5\$ 的結果。此外,研究並展示當\$m\$ 足夠大時,存在 \$m\$ 正則圖其二元全支配數與下界 \$\lceil

2n/m\rceil\$ 吻合。

中文關鍵詞:二元全支配問題 Harary 圖

英文摘要:In this report, we are concerned with the 2-tuple total domination number \$\gamma_{\times2, t}(H_{m, n})\$ of Harary graphs \$H_{m, n}\$, where \$m\$ is odd. We complete the analysis for \$m=3\$, and give some result for \$m=5\$. For \$m\$ large enough, we show that there exists \$m\$-regular graphs whose 2-tuple total domination number matches the lower bound of \$\lceil 2n/m\rceil\$.

英文關鍵詞: 2-tuple total domination Harary graph

Abstract

In this report, we are concerned with the 2-tuple total domination number $\gamma_{\times 2,t}(H_{m,n})$ of Harary graphs $H_{m,n}$, where m is odd. We complete the analysis for m=3, and give some result for m=5. For m large enough, we show that there exists m-regular graphs whose 2-tuple total domination number matches the lower bound of $\lceil 2n/m \rceil$.

Keywords: k-tuple total domination; Harary graph

Contents

1	Introduction							
	1.1	Previous results of the k -tuple total domination problem	3					
	1.2	Double total domination on Harary graphs	4					
2	Res	ults on Harary graphs	6					
	2.1	Even n and $m = 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6					
		2.1.1 Proofs	7					
	2.2	Odd n and $m = 3 \dots \dots$	8					
		2.2.1 Proofs of Theorem 7	8					
	2.3	Even n and $m = 5$	9					
		$2.3.1 r = 2 \dots \dots$	10					
		$2.3.2 r = 1 \dots \dots$	10					
3 Double total domination on regular graphs								
	3.1	Probabilistic analysis – the first attempt	12					
	3.2	Probabilistic analysis with union bound	13					
4	Con	nclusion	14					

1 Introduction

Given a graph G, a vertex subset is a k-tuple total dominating set if every vertex has at least k neighbors in the set, and the size of a minimum k-tuple total dominating set (kTDS for abbreviation) is called the k-tuple total domination number of G. The notion of k-tuple total domination was proposed by Henning and Kazemi [3] in 2010, and some results of this problem were proposed recently. This project is proposed due to the work of Kazemi and Pahlavsay [6]. They are concerned with the problem with k = 2, where the problem is also called the double total domination problem. They gave upper bounds on the double total domination number of Harary graphs, by a standard constructive way. However, for some cases, there is still a gap of 1 between the given upper bound and a known lower bound. This motivates us to propose this project. In the next section, we give a brief survey for this problem.

1.1 Previous results of the k-tuple total domination problem

We start with the k-tuple total domination problem, and then get into the specific work of Kazemi and Pahlavsay [6]. The k-tuple total domination was proposed by Henning and Kazemi [3] in 2010. In their paper, they gave some results for general graphs. In particular, they consider the class of complete p-partite graphs and the k join of graphs. Later on, they gave some results on the product of graphs. We summarize the known results in Table 1.

Henning and Kazemi [4] gave a lower bound on $\gamma_{\times k,t}$, which is widely applied in the subsequent research. We summarize it in Proposition 1.

Proposition 1 (Henning and Kazemi [4]). Let G be a graph of order n, and let Δ and δ be the maximum and minimum degree of G, respectively. If $\delta \geq k$, we have

$$\gamma_{\times k,t}(G) \ge \left\lceil \frac{kn}{\Delta} \right\rceil.$$

Usually, the k-tuple total domination problem serves as a generalization of the total domination problem, i.e. the k-tuple total domination problem with k=1. To make the work nontrivial, k is assumed to be at least two, and the case in which k=2, the double total domination problem, is usually independently discussed. Related results are summarized in Table 2.

Recently, Pradhan [9], and Lan and Chang [8] investigated the problem from an algorithmic viewpoint. The complexity of computing the k-tuple total domination number on different graph classes are conducted. Results are shown in Table 3.

¹The k join of graphs G and H is a graph obtained from the disjoint union of G and H with each vertex of G joining at least k vertices of H.

²The complementary prism of a graph G is the graph formed from the disjoint union of G and its complement \bar{G} by adding the edges of a perfect matching between the corresponding vertices of G and \bar{G} .

Table 1: Previous results for the k-tuple total domination problem.

Authors	Year	Graph class	Results
Henning,	2010	general	$\gamma_{\times k,t}(G) = \tau_k(H_G)$
Kazemi [3]			
			$\gamma_{\times k,t}(G) \le \left(p + \sum_{i=0}^{k-1} (k-i) {\delta \choose i} p^i (1-p)^{\delta-i} \right) r^i$
			$0 \le p \le 1$
		fixed k , sufficiently	$\gamma_{\times k,t}(G) \le (\ln \delta + (k-1+o(1)) \ln \ln \delta) n/\delta$
		large δ	
		k join of a graph and	k+1
		K_{k+1}	
		${\it complete} {\it p}\text{-partite},$	$\gamma_{\times k,t}(G) = k+1$
		$p \ge k + 1$	
		complete p -partite,	$\gamma_{\times k,t}(G) = k+2$
		p = k	
		complete p -partite,	$\gamma_{\times k,t}(G) = \lceil kp/(p-1) \rceil$
		$n_i \geq \lceil kp/(p-1) \rceil,$	
		p < k	
Kazemi [5]	2011	complementary	the number differs according to the size of
		prisms of complete	the partite sets.
		p-partite graphs ²	
Henning,	2012	product of complete	$\gamma_{\times k,t}(G) = k+2$, if $n \ge k+2$; $k+3$ if
Kazemi [4]		m- and n -partite	n = k + 1
		graphs	
		$K_m \times K_n$	$\gamma_{\times k,t}(G) = k+2$, if $n \ge k+2$; $k+3$ if
			n = k + 1

1.2 Double total domination on Harary graphs

A Harary graph $H_{m,n}$ is defined depending on two positive integers m and n with m < n. The vertex set of $H_{m,n}$ is the integers, ranging from 1 to n, and the edge set is defined depending on the parities of m and n. Usually, it is convenient to define the graph from a geometric viewpoint. The n vertices are placed around a circle, equally spaced. If m is even, each vertex is adjacent to its closest m vertices. Otherwise, if n is even, each vertex is adjacent to its closest m-1 vertices and to its diametrically opposite vertex. If both n and m are odd, each vertex is adjacent to its

$$\alpha(m,n) = \begin{cases} \frac{m(n+1)}{2}, & \text{if } n \text{ is odd,} \\ \frac{n(m+1)}{2}, & \text{if } n \equiv 2 \mod 4, \ m \text{ is odd, and } n \leq 2m, \\ \frac{m(n+2)}{2}, & \text{otherwise.} \end{cases}$$

³Given $n \not\equiv 0 \mod 4$ and $m \not\equiv 0 \mod 4$,

Table 2: Previous results for double total domination problem.

Authors	Year	Graph class	Results
Henning,	2010	general	$\gamma_{\times 2,t}(G) \le (\ln(\delta+2) + \ln\delta + 1) n/\delta$
Kazemi [3]			
		$\Delta(G) \le n/2$	$\gamma_{\times 2,t}(G) = n$
		bipartite graphs with a	$\gamma_{\times 2,t}(G) \le 9n/10$
		partite set of vertices of	
		minimum degree	
		cubic bipartite	$\gamma_{\times 2,t}(G) \le 8n/9$
Kazemi [5]	2011	complementary prism	$\gamma_{\times 2,t}(G) = n+2, n \ge 5$
		of cycles	
Henning,	2012	$C_m \times C_n$	$\gamma_{\times 2,t}(G) = mn/2$, if $m \equiv n \equiv 0$
Kazemi [4]			mod 4; $\gamma_{\times 2,t}(G) \le \alpha(m,n)$, otherwise ³
Kazemi,	2016	Harary graphs	See Sec. 1.2
Pahlavsay [6]			

closest m-1 vertices, and for a specific set of consecutive n+1 vertices, say 1 to n+1, each of them has a clockwise n-step neighbor. An example is given in Figure 1.

A Harary graph $H_{m,n}$ is an m-connected graph of order n with the minimum number of edges [2]. On Harary graphs, Kazemi and Pahlavsay [6] gave the following results for the double total domination problem.

Theorem 1 (Kazemi and Pahlavsay [6]). If both m and n are even, then

$$\gamma_{\times 2,t}(H_{m,n}) = \left\lceil \frac{2n}{m} \right\rceil.$$

If m is odd and n is even, then

$$\left\lceil \frac{2n}{m} \right\rceil \le \gamma_{\times 2, t}(H_{m, n}) \le \left\lceil \frac{2n}{m} \right\rceil + 1.$$

If both m and n are odd, then

$$\left\lceil \frac{2n-1}{m} \right\rceil \le \gamma_{\times 2,t}(H_{m,n}) \le \left\lceil \frac{2n-1}{m} \right\rceil + 1.$$

The theorem was derived as follows. The number $\gamma_{\times 2,t}(H_{m,n})$ is lower bounded using Proposition 1. For the upper bound, Kazemi and Pahlavsay applied two strategies to build a double total dominating set:

- Each vertex is dominated by its clockwise/counterclockwise neighbor within m/2 steps.
- Some of the chosen vertices are dominated by their diametrically opposite neighbors.

Table 3:	Algorithmic	results for	the i	k-tuple	total	domination	problem.

Authors	Year	Graph class	Results	
Pradhan [9] 201		split graphs	NP-c	
		doubly chordal graphs	NP-c	
		bipartite graphs	NP-c, APX-c for $\Delta(G) = k+2$	
		chordal bipartite graphs	P	
		split graphs	NP-complete	
Lan, Chang [8]	2014	each block is a clique, a	linear time	
		cycle, or a complete bi-		
		partite graph		
		undirected path graph	NP-c	

For the two kinds of double total dominating sets, the one with fewer vertices gives the upper bound. We note here that if m and n satisfy certain conditions, the upper bound matches the lower bound.⁴ However, for succinctness, we omit the details.

2 Results on Harary graphs

We give the exact values for $\gamma_{\times 2,t}(H_{3,2n})$ and $\gamma_{\times 2,t}(H_{3,2n+1})$ in Sections 2.3 and 2.2, respectively, In the following, we write n as 2n and 2n+1 to emphasize that n is even and odd, respectively.

2.1 Even n and m=3

Kazemi and Pahlavsay [6] gave the following result.⁵

Proposition 2 (Kazemi and Pahlavsay [6]). Let $2n = 3\ell + r$ with r < 3. Then

$$\left\lceil \frac{4n}{3} \right\rceil \le \gamma_{\times 2, t}(H_{3, 2n}) \le \left\lceil \frac{4n}{3} \right\rceil + 1.$$

In particular, $\gamma_{\times 2,t}(H_{3,2n}) = \lceil \frac{4n}{3} \rceil$ if $r \neq 1$.

To complete the analysis of $\gamma_{\times 2,t}(H_{3,2n})$, we assume r=1. Let S be a 2TDS of $H_{3,2n}$. By Proposition 2,

$$|S| \ge \left\lceil \frac{4n}{3} \right\rceil = \left\lceil 2\ell + \frac{2}{3} \right\rceil = 2\ell + 1.$$

The following lemma gives a necessary condition for $|S| = 2\ell + 1$.

Lemma 2. Assume that $2n = 3\ell + 1$. If $|S| = 2\ell + 1$, then there is exactly one vertex v satisfying $|N(v) \cap S| = 3$ and $v \in V \setminus S$.

⁴Please refer to Theorems 2.3 and 2.4 in [6].

⁵The result given by Kazemi and Pahlavsay is more general, namely, for $H_{2m+1,2n}$ with m < n. For succinctness we summarize the case 2m + 1 = 3 only.

Proof. Since $2 \cdot 2n < 3 \cdot (2\ell + 1)$, there exists exactly one such vertex v. Consider the subgraph induced by S. By the handshaking lemma, $v \notin S$.

Based on Lemma 2, we develop the following theorem.

Theorem 3. Assume $2n = 3\ell + 1$. Then

$$\gamma_{\times 2,t}(H_{3,2n+1}) = \begin{cases} 2\ell + 1, & \text{if } \ell = 1 \mod 4, \\ 2\ell + 2, & \text{if } \ell = 3 \mod 4. \end{cases}$$

2.1.1 Proofs

Lemma 4. Assume $2n = 3\ell + 1$ and $n \ge 8$. Let S and S' be 2-tuple total dominating sets of $H_{3,2n}$ and $H_{3,2n-12}$, respectively. Then

$$|S| = 2\ell + 1 \implies |S'| = 2\ell + 1.$$

Proof. Without loss of generality, let $2n \notin S$ and $|N(2n) \cap S| = 3$. Then $n \in S$. Moreover,

$$S \cap \{i, n+i : 1 \le i \le 7\} = \{1, 2, 3, 4, 7, n+1, n+4, n+5, n+6, n+7\}.$$

S induces a 2TDS of $H_{3,2n-12}$ by removing the 12 vertices, $\{i, n+i \colon 1 \le i \le 6\}$.

Lemma 5. For $2n = 3\ell + 1$ and $\ell \equiv 3 \mod 4$, $\gamma_{\times 2,t}(H_{3,2n}) = 2\ell + 2$.

Proof. By Proposition 5, it suffices to show $\gamma_{\times 2,t}(H_{3,2n}) \neq 2\ell + 1$. Let $\ell = 4k + 3$ for $k \geq 0$. We prove by induction on k. The inductive step is shown in Lemma 4. We verify the base case in the following. Namely, we claim $\gamma_{\times 2,t}(H_{3,10}) \neq 7$.

Suppose that there is a 2TDS S of size 7. Assume without loss of generality that $10 \in S$. Then

$$\{1,5,9\} \subseteq S \implies \{4,6\} \subseteq S \implies \{3,7\} \cap S = \emptyset \implies |N(2) \cap S| < 2,$$

a contradiction. \Box

Lemma 6. For $2n = 3\ell + 1$ and $\ell \equiv 1 \mod 4$, $\gamma_{\times 2,t}(H_{3,2n}) = 2\ell + 1$.

Proof. Let S be the requested 2TDS, and let 2n be the vertex v with $|N(v) \cap S| = 3$. Then

$$S = \left\{ 6k + i \colon 1 \le i \le 4, 0 \le k < \frac{n-2}{6} \right\} \cup \left\{ n + 6k + i \colon 4 \le i \le 7, 0 \le k < \frac{n-2}{6} \right\} \cup \left\{ n - 1, n, n + 1 \right\}.$$

It can be easily verified that S is a 2TDS and $|S| = 2\ell + 1$.

2.2 Odd n and m = 3

From Proposition 1, the 2-tuple total domination number of $H_{2m+1,2n+1}$ is bounded below by $\frac{2n+1}{m+1}$. The bound can be improved according to the following inequality. Let S be a 2-tuple total dominating set of $H_{2m+1,2n+1}$. Then

$$|S| \cdot (2m+1) + 1 \ge 2 \cdot (2n+1),\tag{1}$$

and thus

$$\gamma_{\times 2,t}(H) \ge \left\lceil \frac{4n+1}{2m+1} \right\rceil.$$

Similar to $\gamma_{\times 2,t}(H_{3,2n})$, Kazemi and Pahlavsay [6] gave the following result.⁶

Proposition 3 (Kazemi and Pahlavsay [6]). Assume $2n + 1 = 3\ell + r$ with r < 3.

$$\left\lceil \frac{4n+1}{3} \right\rceil \le \gamma_{\times 2,t}(H_{3,2n+1}) \le \left\lceil \frac{4n+1}{3} \right\rceil + 1.$$

In particular, $\gamma_{\times 2,t}(H_{3,2n+1}) = \left\lceil \frac{4n+1}{3} \right\rceil$ if r = 1.

Proposition 4 (Yang and Wang [12]). Assume $2n + 1 = 3\ell$. Then $\gamma_{\times 2,t}(H_{3,2n+1}) = \left\lceil \frac{4n+1}{3} \right\rceil$.

Note that $\lceil \frac{4n+1}{3} \rceil = 2\ell+1$. To complete the analysis of $\gamma_{\times 2,t}(H_{3,2n+1})$, it remains to consider $2n+1=3\ell+2$. The result we develop is stated in Theorem 7.

Theorem 7. Assume $2n + 1 = 3\ell + 2$. Then

$$\gamma_{\times 2,t}(H_{3,2n+1}) = 2\ell + 1.$$

First, consider vertex n + 1, i.e. the vertex with degree 4.

Lemma 8. Assume $2n + 1 = 3\ell + 2$. Let S be a 2-tuple total dominating set of $H_{3,2n+1}$. Then

$$|S| = 2\ell + 1 \implies n + 1 \in S.$$

Proof. Otherwise, $3 \cdot |S| < 4n + 2$, a contradiction.

Specifically, a 2-tuple total dominating set exists only if

$$\forall_{v \in V} \quad |N(v) \cap S| = 2. \tag{2}$$

The proofs are based on the necessity established above.

2.2.1 Proofs of Theorem 7

Proof. Let

$$S = \{1, n+1, 2n+1\} \cup \{3k+i, n+3k+i \colon 1 \le k \le \frac{n-2}{3}, i \in \{0, 1\}\}.$$

S is a 2-tuple total dominating set of size $2\ell + 1$. See also Fig. 1.

⁶As mentioned previously, their result is more general.

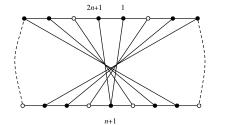


Figure 1: The labelling principle and a minimum 2TDS of $H_{3,11}$.

2.3 Even n and m = 5

We write $2n = 5\ell + r$ with $0 \le r < 5$. Kazemi and Pahlavsay [6] proved the following.

Proposition 5 (Kazemi and Pahlavsay [6]). Let $2n = 5\ell + r$ with r < 5. Then

$$\left\lceil \frac{4n}{5} \right\rceil \le \gamma_{\times 2, t}(H_{5, 2n}) \le \left\lceil \frac{4n}{5} \right\rceil + 1.$$

In particular, $\gamma_{\times 2,t}(H_{5,2n}) = \left\lceil \frac{4n}{5} \right\rceil$ if r = 0 or 2 < r < 5.

Note that $\left\lceil \frac{4n}{5} \right\rceil = 2\ell + 1$.

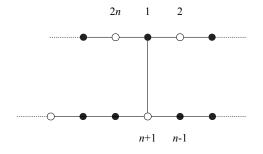
To derive the exact value of $\gamma_{\times 2,t}(H_{5,2n})$, it remains to consider the cases r=1 and r=2. From Proposition 5, we derive the following.

Proposition 6. Let D be a 2TDS of $H_{5,2n}$ with $2n = 5\ell + r$ and $1 \le r \le 2$. If $|D| = 2\ell + 1$, then

$$|\{u \in V : |N(u) \cap D| = 2\}| \ge 2n - 3.$$

Moreover, there is a vertex $x \in V \setminus D$ such that $|N(x) \cap D| = 3$. In particular, when r = 2 the vertex x is unique.

Proof. The first part of the proposition can be proved using double counting, as how Proposition 5 is proved. In addition, by considering the subgraph induced by D, it can be derived that at least one vertex of degree 3 or 5 is in $V \setminus D$. To prove the proposition, it suffices to verify that $\deg(x) \neq 5$. Suppose to the contrary that $\deg(x) = 5$. Without loss of generality, let x = n + 1. There is only one set of vertices, the black ones in the following figure, that can be the 2TDS.



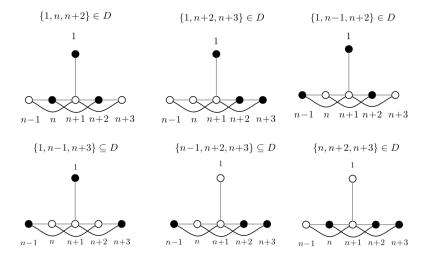
Note that when deg(x) = 5, all the other vertices are of degree 2. However, the existence of a requested 2TDS leads to the existence of vertices of degree 3 (vertices 2 and 2n in the figure). \Box

In the following, for a 2TDS D we call the vertices x with $|N(x) \cap D| \geq 2$ the singular vertices.

2.3.1 r=2

Lemma 9. For $2n = 5\ell + 2$, $\gamma_{\times 2,t}(H_{5,2n}) = 2\ell + 2$.

Proof. Suppose to the contrary that $\gamma_{\times 2,t}(H_{5,2n}) = 2\ell + 1$. By Proposition 6 there is a unique singular vertex x, with $x \in V \setminus D$ and $|N(x) \cap D| = 3$. Without loss of generality assume that x = n + 1. Because of symmetry, it suffices to consider the six cases, with black vertices indicating the members of D:

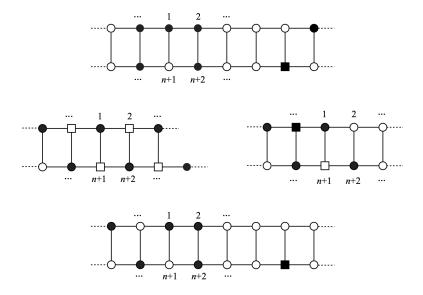


In either case, there will be an additional vertex y with $|N(y) \cap D| = 3$.

2.3.2 r = 1

Recall that $2n = 5\ell + 1$. The smallest case is $H_{5,6} = K_6$, and $\gamma_{\times 2,t}(H_{5,6}) = 2\ell + 1 = 3$. As we show below, this is the only case in which $\gamma_{\times 2,t}(H_{5,2n} = 2\ell + 1)$. In the following, we assume that ℓ is an odd number greater than or equal to 3, and show that $\gamma_{\times 2,t}(H_{5,2n}) = 2\ell + 2$.

Let D be a 2TDS, and suppose to the contrary that $|D| = 2\ell + 1$. By Proposition 6, there is a vertex v satisfying $|N(v) \cap D| = 3$. Without loss of generality, we assume that v = n + 1, as the six cases depicted in the proof of Lemma 9. It can be verified that $|N(1) \cap D| \neq 4$ by an immediate case-by-case analysis. Thus it remains to consider $|N(1) \cap D| = 2$ and $|N(1) \cap D| = 3$. Below is an illustration for $N(1) \cap D = \{2, 2n\}$, in which squared vertices indicate those violating Proposition 6.



Remark 1. The analysis for $|N(1) \cap D| = 2$ and $|N(1) \cap D| = 3$ is still done by enumerating all possibilities and analyze case by case. The whole process is tedious, so we do not include it here. Details can be found in [10, 11].

The only case that needs a nontrivial analysis is given in Lemma 10.

Lemma 10. Let D be a 2TDS of $H_{5,2n}$, where $2n = 5\ell + 1$ and ℓ is an odd number at least 3. If $|D| = 2\ell + 1$ and $n + 1 \notin D$ with |N(n + 1)| = 3, then, in a symmetric manner, $1 \notin D$, $N(1) = \{2, 3, 2n - 1\}$, and $N(n + 1) = \{n - 2, n + 2, n + 3\}$.

By Lemma 10, we may prove that $H_{5,2n} = 2\ell + 2$ for $\ell \geq 3$, which is done by induction on the number of vertices. We start with the induction basis.

Lemma 11. $\gamma_{\times 2,t}(H_{5,16}) = 8$.

Proof. By Proposition 6 it suffices to show that $\gamma_{\times 2,t}(H_{5,16}) \neq 7$. Suppose to the contrary that $\gamma_{\times 2,t}(H_{5,16}) = 7$. Let D be a minimum 2TDS of $H_{3,16}$ with, without loss of generality, vertex 9 having three neighbors in D. It can be derived that vertex 1 has three neighbors in D also. Let $N(1) \cap D = \{2, 3, 15\}$ and $N(9) \cap D = \{7, 10, 11\}$. Since every vertex has degree 5 and $|N(u) \cap D| = 2$ for $u \in V(H_{3,10}) \setminus \{1, 9\}$, the vertex z is the uniquely singular and $|N(u) \cap D| = 3$, we have

$$10 \in D \quad \stackrel{N(2)}{\Longrightarrow} \quad \{4\} \notin D$$

$$\{2,3\} \in D \quad \stackrel{N(4)}{\Longrightarrow} \quad \{5,6,12\} \notin D$$

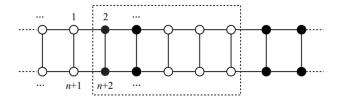
$$\{3,10\} \in D \quad \stackrel{N(11)}{\Longrightarrow} \quad 13 \notin D$$

$$7 \in D \quad \stackrel{N(15)}{\Longrightarrow} \quad 14 \in D.$$

Clearly, this leads to the fact that $12 \notin D$ and $|N(12) \cap D| = |\{4, 10, 11, 14\}| = 4$, a contradiction. Thus, $\gamma_{\times 2, t}(H_{5,16}) = 8$.

Lemma 12. For $2n = 5\ell + 1$, $\gamma_{\times 2,t}(H_{5,2n}) = 2\ell + 2$.

Proof. By Lemma 11, this holds for $\ell = 3$. Let n be the least number such that $\gamma_{\times 2,t}(H_{5,2n+10}) = 2(\ell+2)+1$. By Lemma 10 the elements in the corresponding 2TDS of $H_{5,2n+10}$ are the black dots in the following figure.



Note that by removing the vertices in the dashed-square, and adding the edges $\{1,7\}$, $\{1,8\}$, $\{n+1,n+7\}$, $\{n+1,n+8\}$, $\{2n,7\}$ and $\{n-1,n+7\}$, we have the graph $H_{5,2n}$, with black dots forming a 2TDS of size $2\ell+1$, which is a contradiction.

3 Double total domination on regular graphs

Given a simple undirected graph G, consider the neighborhood hypergraph of G. Namely, the hypergraph (V, F) with V = V(G) and

$$F = \{N(v) \colon v \in V(G)\},\$$

where N(v) is the open neighborhood of v in G. A transversal T of a hypergraph H is a vertex subset such that for $A \in F$, $T \cap A \neq \emptyset$. For the double total domination problem (i.e. the 2-tuple total domination problem) it asks for the minimum transversal T satisfying $|T \cap A| \geq 2$ for every $A \in F$.

A k-coloring of a hypergraph H = (V, F) is a mapping $f \colon V \to [k]$. For a k-coloring f, an edge A is monochromatic if $|f(v)| \colon v \in A| = 1$. A coloring of hypergraph H is proper if no edge of H is monochromatic. Finding the minimum transversal of a hypergraph H can be interpreted as finding a specific proper k-coloring of H.

Note that in the Harary graph $H_{m,n}$. The neighborhood hypergraph is <u>m</u>-uniform and m-regular. Moreover, each edge intersects exactly 2m-1 other edges.

3.1 Probabilistic analysis – the first attempt

Our attempt is to apply Lovász local lemma to see under which conditions there exists an 2n-vertex (2m+1)-regular graph that has the double total domination number $\lceil 4n/(2m+1) \rceil$.

Theorem 13 (Asymmetric Lovász local lemma []). Let $\mathcal{A} = \{A_1, \ldots, A_n\}$ be a finite set of events. For $A \in \mathcal{A}$ let $\Gamma(A)$ denote set of events such that $A \notin \Gamma(A)$ and events in $\mathcal{A} \setminus \Gamma(A)$ are mutually independent. If there exists an assignment of reals $x : \mathcal{A} \to [0,1)$ such that

$$\forall A \in \mathcal{A} : \Pr(A) \le x(A) \prod_{B \in \Gamma(A)} (1 - x(B))$$

then
$$\Pr\left(\overline{A_1} \wedge \cdots \wedge \overline{A_n}\right) \geq \prod_{i \in \{1, \cdots, n\}} (1 - x(A_i)).$$

Theorem 14 (Symmetric Lovász local lemma []). If $ep(d+1) \le 1$, where e is the base of natural logarithms, then the probability that none of the events occurs is nonzero.

Let $f: V \to [k]$ be a coloring, and let color 1 denote the membership to the double total dominating set. Namely, f(v) = 1 if and only if v is a member of the corresponding double total dominating set. We color the vertices using k colors uniformly at random. Let A_i be the event in which

$$|v \in F_i: f(v) = 1| \neq 2.$$

Let x = 2m + 1. Then

$$\Pr(A_i) = 1 - {x \choose 2} \frac{1}{k^2} \left(\frac{k-1}{k}\right)^{x-2}.$$

Let $p = \Pr(A_i)$. If ep(d+1) < 1, where A_i is mutually independent to all but at most d events, then Lovász local lemma shows that $\Pr(\cap \overline{A_i}) > 0$. Here d = 2x - 1. However, for 0 < q < 1

$$e\left(1 - {x \choose 2}q^2 (1-q)^{x-2}\right)(2x) \ge 1.$$

The Lovász local lemma does not apply to this situation.

The probability to the individual event A_i is too large. (It approaches to 1 as x goes to infinity.)

3.2 Probabilistic analysis with union bound

We now consider the probability space of choosing $2\ell + 1$ vertices from the 2n vertices. Recall that $2n = (2m+1)\ell + r$, with $0 \le r \le 2m$. Let A_i be the event that less than two neighbors of vertex i are chosen. Then for $i \in [2n]$

$$\Pr(A_i) = \frac{\binom{2n-2m-1}{2\ell} \binom{2m+1}{1} + \binom{2n-2m-1}{2\ell+1}}{\binom{2n}{2\ell+1}}.$$

When 2n and 2m+1 are large and close enough, the inequality holds (e.g. 2n = 60, 2m+1 = 57). Experimental results shows the following.

Observation 1. When n and m are close enough,

$$\sum_{i \in [2n]} \Pr(A_i) < 1. \tag{3}$$

A necessary condition when Eq. (3) holds is 2n/(2m+1) < 2.

4 Conclusion

We complete the analysis for $H_{3,N}$, and some cases for $H_{5,N}$. The results are summarized as follows.

(i) For N = 2n and $2n = 3\ell + r$,

$$\gamma_{\times 2,t}(H_{3,2n}) = \begin{cases} \lceil \frac{4n}{3} \rceil + 1, & \text{if } r = 1 \text{ and } \ell \equiv 3 \bmod 4 \\ \lceil \frac{4n}{3} \rceil, & \text{otherwise.} \end{cases}$$

(ii) For N = 2n + 1,

$$\gamma_{\times 2,t}(H_{3,2n+1}) = \left\lceil \frac{4n+1}{3} \right\rceil.$$

(iii) For N = 2n and $2n = 5\ell + r$,

$$\gamma_{\times 2,t}(H_{5,2n}) = \begin{cases} \lceil \frac{4n}{5} \rceil + 1, & \text{if } r = 1 \text{ or } r = 2\\ \lceil \frac{4n}{3} \rceil, & \text{otherwise.} \end{cases}$$

For an *n*-vertex, *m*-regular graph, if *m* is large enough, we conjecture that the double total domination number matches the lower bound of $\lceil 2n/m \rceil$. Sufficient conditions for the existence of such a graph will be conducted as a future work.

References

- [1] N. Alon, J. Spencer: The Probabilistic Method, 4th ed., Wiley-Interscience.
- [2] F. Harary, "The maximum connectivity of a graph," Proceedings of the National Academy of Sciences of the United States of America 48 (1962), 1142–1146.
- [3] M. A. Henning, A. P. Kazemi, "k-tuple total domination in graphs," Discrete Applied Mathematics 158 (2010), 1006–1011.
- [4] M. A. Henning, A. P. Kazemi, "k-tuple total domination in cross product of graphs," Journal of Combinatorial Optimization 24 (2012), 339–346.
- [5] A. P. Kazemi, "k-tuple total domination in complementary prisms," ISRN Discrete Mathematics, Article ID 681274, 2011.
- [6] A. P. Kazemi, B. Pahlavsay, "Double total domination in Harary graphs," arXiv:1603.02430.
- [7] A. P. Kazemi, "A note on the k-tuple total domination number of a graph," Tbilisi Mathematical Journal 8 (2015).
- [8] J. K. Lan, G. J. Chang, "On the algorithmic complexity of k-tuple total domination," Discrete Applied Mathematics 174 (2014), 81–91.

- [9] D. Pradhan, "Algorithmic aspects of k-tuple total domination in graphs," Information Processing Letters 112 (2012), 816–822.
- [10] C.-W. Wu, A Study on the Double Total Domination Problem in Harary Graphs. Master Thesis, National Taipei University of Business, 2018.
- [11] S.-H. Yang, The 2-tuple total domination problem on Harary graphs. Master Thesis, National Taipei University of Business, 2017.
- [12] S.-H. Yang and H.-L. Wang, "A note on the 2-tuple total domination problem in Harary graphs," International Computer Symposium 2016, Taiwan.

106年度專題研究計畫成果彙整表

計畫	畫主持人: 王		計畫編號: 106-2221-E-003-039-MY3				
計	計畫名稱:Harary圖上的 k元全支配問題						
成果項目			量化	單位	質化 (說明:各成果項目請附佐證資料或細 項說明,如期刊名稱、年份、卷期、起 訖頁數、證號等)		
	學術性論文	期刊論文	0				
		研討會論文	2	篇	Morpion Solitare 5D#的上界探討,第 36 屆組合數學與計算理論研討會。 A Note on the Double Total Domination in Harary Graphs. 第 36 屆組合數學與計算理論研討會。		
13		專書	0	本			
		專書論文	0	章			
		技術報告	0	篇			
		其他	0	篇			
		期刊論文	0				
國外	學術性論文	研討會論文	2	篇	Determining a social choice with respect to linear preferences, Seventh International Workshop on Computational Social Choice (COMSOC-2018) Troy, NY, USA, 25-27 June 2018. The Complexity of Packing Edge-Disjoint Paths. 14th IPEC 2019: Munich, Germany 10:1-10:16		
		專書	0	本			
		專書論文	0	章			
		技術報告	0	篇			
		其他	0	篇			
	本國籍	大專生	0				
		碩士生	7		郭之淇、吳嘉雯、吳宜哲、張皓博、鍾 淇翔、梁翌菖、李松展		
參		博士生	0	人次			
與		博士級研究人員	0				
計畫人		專任人員	0				
	非本國籍	大專生	0				
カ		碩士生	0				
		博士生	0				
		博士級研究人員	0				
		專任人員	0				

其他成果

(無法以量化表達之成果如辦理學術活動、獲得獎項、重要國際合作、研究成果國際影響力及其他協助產業技術發展之具體效益事項等,請以文字敘述填列。)

德國 RWTH Aachen University 之 Prof. Peter Rossmanith 研究團隊於計畫期間來訪,與其合作發表論文於 IPEC 2019 研討會。