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中 文 摘 要 ： 我們研究 Harary 圖 $H_{m, n}$ 上的二元全支配數。我們完成了
$m=3$ 之分析，並給了部分 $m=5$ 的結果。此外，研究並展示當
$m$ 足夠大時，存在 $m$ 正則圖其二元全支配數與下界 $\lceil
2n/m\rceil$ 吻合。

中文關鍵詞： 二元全支配問題
Harary 圖

英 文 摘 要 ： In this report, we are concerned with the 2-tuple total
domination number $\gamma_{\times2,t}(H_{m, n})$ of Harary
graphs $H_{m, n}$, where $m$ is odd. We complete the
analysis for $m=3$, and give some result for $m=5$. For $m$
large enough, we show that there exists $m$-regular graphs
whose 2-tuple total domination number matches the lower
bound of $\lceil 2n/m\rceil$.

英文關鍵詞： 2-tuple total domination
Harary graph



Abstract

In this report, we are concerned with the 2-tuple total domination number γ×2,t(Hm,n)

of Harary graphs Hm,n, where m is odd. We complete the analysis for m = 3, and give some

result for m = 5. For m large enough, we show that there exists m-regular graphs whose

2-tuple total domination number matches the lower bound of d2n/me.

Keywords: k-tuple total domination; Harary graph
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1 Introduction

Given a graph G, a vertex subset is a k-tuple total dominating set if every vertex has at least

k neighbors in the set, and the size of a minimum k-tuple total dominating set (kTDS for

abbreviation) is called the k-tuple total domination number of G. The notion of k-tuple total

domination was proposed by Henning and Kazemi [3] in 2010, and some results of this problem

were proposed recently. This project is proposed due to the work of Kazemi and Pahlavsay [6].

They are concerned with the problem with k = 2, where the problem is also called the double

total domination problem. They gave upper bounds on the double total domination number of

Harary graphs, by a standard constructive way. However, for some cases, there is still a gap of

1 between the given upper bound and a known lower bound. This motivates us to propose this

project. In the next section, we give a brief survey for this problem.

1.1 Previous results of the k-tuple total domination problem

We start with the k-tuple total domination problem, and then get into the specific work

of Kazemi and Pahlavsay [6]. The k-tuple total domination was proposed by Henning and

Kazemi [3] in 2010. In their paper, they gave some results for general graphs. In particular,

they consider the class of complete p-partite graphs and the k join of graphs.1 Later on, they

gave some results on the product of graphs. We summarize the known results in Table 1.

Henning and Kazemi [4] gave a lower bound on γ×k,t, which is widely applied in the subse-

quent research. We summarize it in Proposition 1.

Proposition 1 (Henning and Kazemi [4]). Let G be a graph of order n, and let ∆ and δ be the

maximum and minimum degree of G, respectively. If δ ≥ k, we have

γ×k,t(G) ≥
⌈
kn

∆

⌉
.

Usually, the k-tuple total domination problem serves as a generalization of the total dom-

ination problem, i.e. the k-tuple total domination problem with k = 1. To make the work

nontrivial, k is assumed to be at least two, and the case in which k = 2, the double total

domination problem, is usually independently discussed. Related results are summarized in

Table 2.

Recently, Pradhan [9], and Lan and Chang [8] investigated the problem from an algorithmic

viewpoint. The complexity of computing the k-tuple total domination number on different graph

classes are conducted. Results are shown in Table 3.

1The k join of graphs G and H is a graph obtained from the disjoint union of G and H with each vertex of G

joining at least k vertices of H.
2The complementary prism of a graph G is the graph formed from the disjoint union of G and its complement

Ḡ by adding the edges of a perfect matching between the corresponding vertices of G and Ḡ.
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Table 1: Previous results for the k-tuple total domination problem.

Authors Year Graph class Results

Henning,

Kazemi [3]

2010 general γ×k,t(G) = τk(HG)

γ×k,t(G) ≤
(
p+

∑k−1
i=0 (k − i)

(
δ
i

)
pi(1− p)δ−i

)
n,

0 ≤ p ≤ 1

fixed k, sufficiently

large δ

γ×k,t(G) ≤ (ln δ + (k − 1 + o(1)) ln ln δ)n/δ

k join of a graph and

Kk+1

k + 1

complete p-partite,

p ≥ k + 1

γ×k,t(G) = k + 1

complete p-partite,

p = k

γ×k,t(G) = k + 2

complete p-partite,

ni ≥ dkp/(p − 1)e,
p < k

γ×k,t(G) = dkp/(p− 1)e

Kazemi [5] 2011 complementary

prisms of complete

p-partite graphs2

the number differs according to the size of

the partite sets.

Henning,

Kazemi [4]

2012 product of complete

m- and n-partite

graphs

γ×k,t(G) = k + 2, if n ≥ k + 2; k + 3 if

n = k + 1

Km ×Kn γ×k,t(G) = k + 2, if n ≥ k + 2; k + 3 if

n = k + 1

1.2 Double total domination on Harary graphs

A Harary graph Hm,n is defined depending on two positive integers m and n with m < n. The

vertex set of Hm,n is the integers, ranging from 1 to n, and the edge set is defined depending on

the parities of m and n. Usually, it is convenient to define the graph from a geometric viewpoint.

The n vertices are placed around a circle, equally spaced. If m is even, each vertex is adjacent to

its closest m vertices. Otherwise, if n is even, each vertex is adjacent to its closest m−1 vertices

and to its diametrically opposite vertex. If both n and m are odd, each vertex is adjacent to its

3Given n 6≡ 0 mod 4 and m 6≡ 0 mod 4,

α(m,n) =


m(n+1)

2
, if n is odd,

n(m+1)
2

, if n ≡ 2 mod 4, m is odd, and n ≤ 2m,

m(n+2)
2

, otherwise.
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Table 2: Previous results for double total domination problem.

Authors Year Graph class Results

Henning,

Kazemi [3]

2010 general γ×2,t(G) ≤ (ln(δ + 2) + ln δ + 1)n/δ

∆(G) ≤ n/2 γ×2,t(G) = n

bipartite graphs with a

partite set of vertices of

minimum degree

γ×2,t(G) ≤ 9n/10

cubic bipartite γ×2,t(G) ≤ 8n/9

Kazemi [5] 2011 complementary prism

of cycles

γ×2,t(G) = n+ 2, n ≥ 5

Henning,

Kazemi [4]

2012 Cm × Cn γ×2,t(G) = mn/2, if m ≡ n ≡ 0

mod 4; γ×2,t(G) ≤ α(m,n), otherwise3

Kazemi,

Pahlavsay [6]

2016 Harary graphs See Sec. 1.2

closest m− 1 vertices, and for a specific set of consecutive n+ 1 vertices, say 1 to n+ 1, each of

them has a clockwise n-step neighbor. An example is given in Figure 1.

A Harary graph Hm,n is an m-connected graph of order n with the minimum number of

edges [2]. On Harary graphs, Kazemi and Pahlavsay [6] gave the following results for the double

total domination problem.

Theorem 1 (Kazemi and Pahlavsay [6]). If both m and n are even, then

γ×2,t(Hm,n) =

⌈
2n

m

⌉
.

If m is odd and n is even, then⌈
2n

m

⌉
≤ γ×2,t(Hm,n) ≤

⌈
2n

m

⌉
+ 1.

If both m and n are odd, then⌈
2n− 1

m

⌉
≤ γ×2,t(Hm,n) ≤

⌈
2n− 1

m

⌉
+ 1.

The theorem was derived as follows. The number γ×2,t(Hm,n) is lower bounded using Proposi-

tion 1. For the upper bound, Kazemi and Pahlavsay applied two strategies to build a double

total dominating set:

• Each vertex is dominated by its clockwise/counterclockwise neighbor within m/2 steps.

• Some of the chosen vertices are dominated by their diametrically opposite neighbors.
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Table 3: Algorithmic results for the k-tuple total domination problem.

Authors Year Graph class Results

Pradhan [9] 2012 split graphs NP-c

doubly chordal graphs NP-c

bipartite graphs NP-c, APX-c for ∆(G) = k+2

chordal bipartite graphs P

split graphs NP-complete

Lan, Chang [8] 2014 each block is a clique, a

cycle, or a complete bi-

partite graph

linear time

undirected path graph NP-c

For the two kinds of double total dominating sets, the one with fewer vertices gives the upper

bound. We note here that if m and n satisfy certain conditions, the upper bound matches the

lower bound.4 However, for succinctness, we omit the details.

2 Results on Harary graphs

We give the exact values for γ×2,t(H3,2n) and γ×2,t(H3,2n+1) in Sections 2.3 and 2.2, respectively,

In the following, we write n as 2n and 2n+1 to emphasize that n is even and odd, respectively.

2.1 Even n and m = 3

Kazemi and Pahlavsay [6] gave the following result.5

Proposition 2 (Kazemi and Pahlavsay [6]). Let 2n = 3`+ r with r < 3. Then⌈
4n

3

⌉
≤ γ×2,t(H3,2n) ≤

⌈
4n

3

⌉
+ 1.

In particular, γ×2,t(H3,2n) =
⌈

4n
3

⌉
if r 6= 1.

To complete the analysis of γ×2,t(H3,2n), we assume r = 1. Let S be a 2TDS of H3,2n. By

Proposition 2,

|S| ≥
⌈

4n

3

⌉
=

⌈
2`+

2

3

⌉
= 2`+ 1.

The following lemma gives a necessary condition for |S| = 2`+ 1.

Lemma 2. Assume that 2n = 3`+1. If |S| = 2`+1, then there is exactly one vertex v satisfying

|N(v) ∩ S| = 3 and v ∈ V \ S.

4Please refer to Theorems 2.3 and 2.4 in [6].
5The result given by Kazemi and Pahlavsay is more general, namely, for H2m+1,2n with m < n. For succinctness

we summarize the case 2m+ 1 = 3 only.
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Proof. Since 2 · 2n < 3 · (2`+ 1), there exists exactly one such vertex v. Consider the subgraph

induced by S. By the handshaking lemma, v /∈ S.

Based on Lemma 2, we develop the following theorem.

Theorem 3. Assume 2n = 3`+ 1. Then

γ×2,t(H3,2n+1) =

2`+ 1, if ` = 1 mod 4,

2`+ 2, if ` = 3 mod 4.

2.1.1 Proofs

Lemma 4. Assume 2n = 3` + 1 and n ≥ 8. Let S and S′ be 2-tuple total dominating sets of

H3,2n and H3,2n−12, respectively. Then

|S| = 2`+ 1 =⇒ |S′| = 2`+ 1.

Proof. Without loss of generality, let 2n /∈ S and |N(2n) ∩ S| = 3. Then n ∈ S. Moreover,

S ∩ {i, n+ i : 1 ≤ i ≤ 7} = {1, 2, 3, 4, 7, n+ 1, n+ 4, n+ 5, n+ 6, n+ 7}.

S induces a 2TDS of H3,2n−12 by removing the 12 vertices, {i, n+ i : 1 ≤ i ≤ 6}.

Lemma 5. For 2n = 3`+ 1 and ` ≡ 3 mod 4, γ×2,t(H3,2n) = 2`+ 2.

Proof. By Proposition 5, it suffices to show γ×2,t(H3,2n) 6= 2`+ 1. Let ` = 4k+ 3 for k ≥ 0. We

prove by induction on k. The inductive step is shown in Lemma 4. We verify the base case in

the following. Namely, we claim γ×2,t(H3,10) 6= 7.

Suppose that there is a 2TDS S of size 7. Assume without loss of generality that 10 ∈ S.

Then

{1, 5, 9} ⊆ S =⇒ {4, 6} ⊆ S =⇒ {3, 7} ∩ S = ∅ =⇒ |N(2) ∩ S| < 2,

a contradiction.

Lemma 6. For 2n = 3`+ 1 and ` ≡ 1 mod 4, γ×2,t(H3,2n) = 2`+ 1.

Proof. Let S be the requested 2TDS, and let 2n be the vertex v with |N(v) ∩ S| = 3. Then

S =

{
6k + i : 1 ≤ i ≤ 4, 0 ≤ k < n− 2

6

}
∪
{
n+ 6k + i : 4 ≤ i ≤ 7, 0 ≤ k < n− 2

6

}
∪ {n− 1, n, n+ 1}.

It can be easily verified that S is a 2TDS and |S| = 2`+ 1.
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2.2 Odd n and m = 3

From Proposition 1, the 2-tuple total domination number of H2m+1,2n+1 is bounded below by
2n+1
m+1 . The bound can be improved according to the following inequality. Let S be a 2-tuple

total dominating set of H2m+1,2n+1. Then

|S| · (2m+ 1) + 1 ≥ 2 · (2n+ 1), (1)

and thus

γ×2,t(H) ≥
⌈

4n+ 1

2m+ 1

⌉
.

Similar to γ×2,t(H3,2n), Kazemi and Pahlavsay [6] gave the following result.6

Proposition 3 (Kazemi and Pahlavsay [6]). Assume 2n+ 1 = 3`+ r with r < 3.⌈
4n+ 1

3

⌉
≤ γ×2,t(H3,2n+1) ≤

⌈
4n+ 1

3

⌉
+ 1.

In particular, γ×2,t(H3,2n+1) =
⌈

4n+1
3

⌉
if r = 1.

Proposition 4 (Yang and Wang [12]). Assume 2n+ 1 = 3`. Then γ×2,t(H3,2n+1) =
⌈

4n+1
3

⌉
.

Note that
⌈

4n+1
3

⌉
= 2`+1. To complete the analysis of γ×2,t(H3,2n+1), it remains to consider

2n+ 1 = 3`+ 2. The result we develop is stated in Theorem 7.

Theorem 7. Assume 2n+ 1 = 3`+ 2. Then

γ×2,t(H3,2n+1) = 2`+ 1.

First, consider vertex n+ 1, i.e. the vertex with degree 4.

Lemma 8. Assume 2n+ 1 = 3`+ 2. Let S be a 2-tuple total dominating set of H3,2n+1. Then

|S| = 2`+ 1 =⇒ n+ 1 ∈ S.

Proof. Otherwise, 3 · |S| < 4n+ 2, a contradiction.

Specifically, a 2-tuple total dominating set exists only if

∀v∈V |N(v) ∩ S| = 2. (2)

The proofs are based on the necessity established above.

2.2.1 Proofs of Theorem 7

Proof. Let

S = {1, n+ 1, 2n+ 1} ∪ {3k + i, n+ 3k + i : 1 ≤ k ≤ n− 2

3
, i ∈ {0, 1}}.

S is a 2-tuple total dominating set of size 2`+ 1. See also Fig. 1.

6As mentioned previously, their result is more general.
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n+1

2n+1 1

Figure 1: The labelling principle and a minimum 2TDS of H3,11.

2.3 Even n and m = 5

We write 2n = 5`+ r with 0 ≤ r < 5. Kazemi and Pahlavsay [6] proved the following.

Proposition 5 (Kazemi and Pahlavsay [6]). Let 2n = 5`+ r with r < 5. Then⌈
4n

5

⌉
≤ γ×2,t(H5,2n) ≤

⌈
4n

5

⌉
+ 1.

In particular, γ×2,t(H5,2n) =
⌈

4n
5

⌉
if r = 0 or 2 < r < 5.

Note that
⌈

4n
5

⌉
= 2`+ 1.

To derive the exact value of γ×2,t(H5,2n), it remains to consider the cases r = 1 and r = 2.

From Proposition 5, we derive the following.

Proposition 6. Let D be a 2TDS of H5,2n with 2n = 5` + r and 1 ≤ r ≤ 2. If |D| = 2` + 1,

then

|{u ∈ V : |N(u) ∩D| = 2}| ≥ 2n− 3.

Moreover, there is a vertex x ∈ V \D such that |N(x) ∩D| = 3. In particular, when r = 2 the

vertex x is unique.

Proof. The first part of the proposition can be proved using double counting, as how Proposi-

tion 5 is proved. In addition, by considering the subgraph induced by D, it can be derived that

at least one vertex of degree 3 or 5 is in V \D. To prove the proposition, it suffices to verify that

deg(x) 6= 5. Suppose to the contrary that deg(x) = 5. Without loss of generality, let x = n+ 1.

There is only one set of vertices, the black ones in the following figure, that can be the 2TDS.

1

n+1

22n

n-1
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Note that when deg(x) = 5, all the other vertices are of degree 2. However, the existence of a

requested 2TDS leads to the existence of vertices of degree 3 (vertices 2 and 2n in the figure).

In the following, for a 2TDS D we call the vertices x with |N(x) ∩ D| ≥ 2 the singular

vertices.

2.3.1 r = 2

Lemma 9. For 2n = 5`+ 2, γ×2,t(H5,2n) = 2`+ 2.

Proof. Suppose to the contrary that γ×2,t(H5,2n) = 2` + 1. By Proposition 6 there is a unique

singular vertex x, with x ∈ V \ D and |N(x) ∩ D| = 3. Without loss of generality assume

that x = n + 1. Because of symmetry, it suffices to consider the six cases, with black vertices

indicating the members of D:

In either case, there will be an additional vertex y with |N(y) ∩D| = 3.

2.3.2 r = 1

Recall that 2n = 5` + 1. The smallest case is H5,6 = K6, and γ×2,t(H5,6) = 2` + 1 = 3. As we

show below, this is the only case in which γ×2,t(H5,2n = 2`+ 1. In the following, we assume that

` is an odd number greater than or equal to 3, and show that γ×2,t(H5,2n) = 2`+ 2.

Let D be a 2TDS, and suppose to the contrary that |D| = 2` + 1. By Proposition 6, there

is a vertex v satisfying |N(v) ∩D| = 3. Without loss of generality, we assume that v = n + 1,

as the six cases depicted in the proof of Lemma 9. It can be verified that |N(1) ∩D| 6= 4 by an

immediate case-by-case analysis. Thus it remains to consider |N(1)∩D| = 2 and |N(1)∩D| = 3.

Below is an illustration for N(1)∩D = {2, 2n}, in which squared vertices indicate those violating

Proposition 6.

10



Remark 1. The analysis for |N(1) ∩D| = 2 and |N(1) ∩D| = 3 is still done by enumerating

all possibilities and analyze case by case. The whole process is tedious, so we do not include it

here. Details can be found in [10, 11].

The only case that needs a nontrivial analysis is given in Lemma 10.

Lemma 10. Let D be a 2TDS of H5,2n, where 2n = 5` + 1 and ` is an odd number at least

3. If |D| = 2` + 1 and n + 1 /∈ D with |N(n + 1)| = 3, then, in a symmetric manner, 1 /∈ D,

N(1) = {2, 3, 2n− 1}, and N(n+ 1) = {n− 2, n+ 2, n+ 3}.

By Lemma 10, we may prove that H5,2n = 2` + 2 for ` ≥ 3, which is done by induction on

the number of vertices. We start with the induction basis.

Lemma 11. γ×2,t(H5,16) = 8.

Proof. By Proposition 6 it suffices to show that γ×2,t(H5,16) 6= 7. Suppose to the contrary

that γ×2,t(H5,16) = 7. Let D be a minimum 2TDS of H3,16 with, without loss of generality,

vertex 9 having three neighbors in D. It can be derived that vertex 1 has three neighbors in D

also. Let N(1)∩D = {2, 3, 15} and N(9)∩D = {7, 10, 11}. Since every vertex has degree 5 and

|N(u)∩D| = 2 for u ∈ V (H3,10)\{1, 9}, the vertex z is the uniquely singular and |N(u)∩D| = 3,

we have

10 ∈ D N(2)
=⇒ {4} /∈ D

{2, 3} ∈ D N(4)
=⇒ {5, 6, 12} /∈ D

{3, 10} ∈ D N(11)
=⇒ 13 /∈ D

7 ∈ D N(15)
=⇒ 14 ∈ D.

Clearly, this leads to the fact that 12 /∈ D and |N(12)∩D| = |{4, 10, 11, 14}| = 4, a contradiction.

Thus, γ×2,t(H5,16) = 8.

11



Lemma 12. For 2n = 5`+ 1, γ×2,t(H5,2n) = 2`+ 2.

Proof. By Lemma 11, this holds for ` = 3. Let n be the least number such that γ×2,t(H5,2n+10) =

2(` + 2) + 1. By Lemma 10 the elements in the corresponding 2TDS of H5,2n+10 are the black

dots in the following figure.

Note that by removing the vertices in the dashed-square, and adding the edges {1, 7}, {1, 8},
{n + 1, n+ 7}, {n + 1, n+ 8}, {2n, 7} and {n− 1, n+ 7}, we have the graph H5,2n, with black

dots forming a 2TDS of size 2`+ 1, which is a contradiction.

3 Double total domination on regular graphs

Given a simple undirected graph G, consider the neighborhood hypergraph of G. Namely, the

hypergraph (V, F ) with V = V (G) and

F = {N(v) : v ∈ V (G)},

where N(v) is the open neighborhood of v in G. A transversal T of a hypergraph H is a vertex

subset such that for A ∈ F , T ∩ A 6= ∅. For the double total domination problem (i.e. the

2-tuple total domination problem) it asks for the minimum transversal T satisfying |T ∩A| ≥ 2

for every A ∈ F .

A k-coloring of a hypergraph H = (V, F ) is a mapping f : V → [k]. For a k-coloring f , an

edge A is monochromatic if |f(v) : v ∈ A| = 1. A coloring of hypergraph H is proper if no edge

of H is monochromatic. Finding the minimum transversal of a hypergraph H can be interpreted

as finding a specific proper k-coloring of H.

Note that in the Harary graph Hm,n. The neighborhood hypergraph is m-uniform and

m-regular. Moreover, each edge intersects exactly 2m− 1 other edges.

3.1 Probabilistic analysis – the first attempt

Our attempt is to apply Lovász local lemma to see under which conditions there exists an

2n-vertex (2m+ 1)-regular graph that has the double total domination number d4n/(2m+ 1)e.

Theorem 13 (Asymmetric Lovász local lemma []). Let A = {A1, . . . , An} be a finite set of

events. For A ∈ A let Γ(A) denote set of events such that A /∈ Γ(A) and events in A\Γ(A) are

mutually independent. If there exists an assignment of reals x : A → [0, 1) such that

∀A ∈ A : Pr(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B))
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then Pr
(
A1 ∧ · · · ∧An

)
≥
∏
i∈{1,···,n}(1− x(Ai)).

Theorem 14 (Symmetric Lovász local lemma []). If ep(d+1) ≤ 1, where e is the base of natural

logarithms, then the probability that none of the events occurs is nonzero.

Let f : V → [k] be a coloring, and let color 1 denote the membership to the double total

dominating set. Namely, f(v) = 1 if and only if v is a member of the corresponding double total

dominating set. We color the vertices using k colors uniformly at random. Let Ai be the event

in which

|v ∈ Fi : f(v) = 1| 6= 2.

Let x = 2m+ 1. Then

Pr(Ai) = 1−
(
x

2

)
1

k2

(
k − 1

k

)x−2

.

Let p = Pr(Ai). If ep(d + 1) < 1, where Ai is mutually independent to all but at most

d events, then Lovász local lemma shows that Pr(∩Ai) > 0. Here d = 2x − 1. However, for

0 < q < 1

e

(
1−

(
x

2

)
q2 (1− q)x−2

)
(2x) ≥ 1.

The Lovász local lemma does not apply to this situation.

The probability to the individual event Ai is too large. (It approaches to 1 as x goes to

infinity.)

3.2 Probabilistic analysis with union bound

We now consider the probability space of choosing 2` + 1 vertices from the 2n vertices. Recall

that 2n = (2m+ 1)`+ r, with 0 ≤ r ≤ 2m. Let Ai be the event that less than two neighbors of

vertex i are chosen. Then for i ∈ [2n]

Pr(Ai) =

(
2n−2m−1

2`

)(
2m+1

1

)
+
(

2n−2m−1
2`+1

)(
2n

2`+1

) .

When 2n and 2m+1 are large and close enough, the inequality holds (e.g. 2n = 60, 2m+1 = 57).

Experimental results shows the following.

Observation 1. When n and m are close enough,∑
i∈[2n]

Pr(Ai) < 1. (3)

A necessary condition when Eq. (3) holds is 2n/(2m+ 1) < 2.

13



4 Conclusion

We complete the analysis for H3,N , and some cases for H5,N . The results are summarized as

follows.

(i) For N = 2n and 2n = 3`+ r,

γ×2,t(H3,2n) =

d
4n
3 e+ 1, if r = 1 and ` ≡ 3 mod 4

d4n
3 e, otherwise.

(ii) For N = 2n+ 1,

γ×2,t(H3,2n+1) =

⌈
4n+ 1

3

⌉
.

(iii) For N = 2n and 2n = 5`+ r,

γ×2,t(H5,2n) =

d
4n
5 e+ 1, if r = 1 or r = 2

d4n
3 e, otherwise.

For an n-vertex, m-regular graph, if m is large enough, we conjecture that the double total

domination number matches the lower bound of d2n/me. Sufficient conditions for the existence

of such a graph will be conducted as a future work.
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