Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr)

Sheng Han Lo, Duraisamy Senthil Raja, Chia Wei Chen, Yu Hao Kang, Jiun Jen Chen*, Chia Her Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)

Abstract

In our novel green approach, the waste polyethylene terephthalate (PET) bottle material has effectively been used as the starting precursor instead of terephthalic acid for the synthesis of five terephthalate based nanoporous trivalent metal-organic frameworks (MOFs) namely MIL-47, MIL-53(Cr), MIL-53(Al), MIL-53(Ga), and MIL-101(Cr). The optimum reaction parameters to achieve the green synthesis were studied. These MOFs were structurally identified by using powder X-ray diffraction (PXRD) measurements. Scanning electron microscopy (SEM) images confirm the particle nature and size of the synthesized MOFs. Nitrogen gas sorption measurements have been done for some of the MOFs to check their porous properties. All the characterization techniques strongly supported that the synthesized MOFs using PET are similar to their literature reports. The gas adsorption studies for the synthesized MIL-53(Cr) and MIL-101(Cr) showed their significant gas uptake capability towards CO2 and H2 gases. Further, the synthesized MIL-47 and MIL-101(Cr) have been tested for their catalytic ability in chemical fixation of CO2 gas through the conversion of CO2 and epoxides to the corresponding cyclic carbonates which shows promising results to use them as catalysts.

Original languageEnglish
Pages (from-to)9565-9573
Number of pages9
JournalDalton Transactions
Volume45
Issue number23
DOIs
Publication statusPublished - 2016
Externally publishedYes

ASJC Scopus subject areas

  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr)'. Together they form a unique fingerprint.

Cite this