VUV photochemistry of CH4 and isotopomers. I. Dynamics and dissociation pathway of the H/D-atom elimination channel

Jen Han Wang*, Kopin Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

The Doppler-selected time-of-flight technique was used to study the formation of H and D in the photolysis of CH4 and its isotopomers. The combination of measurements for the photofragment kinetic energy release P(ET) and the anisotropy parameter β(ET) distributions allows us to differentiate, for the first time, three distinct pathways which are involved in C-H (C-D) bond fission. In conjunction with a recent ab initio theoretical investigation, the mechanisms for this complicated multichannel dissociation process are proposed. In particular, two distinct dissociation pathways are elucidated for the two-fragments channel CH3(X̃2A)+H. One pathway invokes a perpendicular-type transition in absorption, which subsequently undergoes intersystem crossing to the triplet surface and then dissociates. The fragmentation via this route yields fast CH3+H with a negative β parameter. Alternatively, a parallel-type excitation is involved, followed by internal conversion to the ground-state surface on which dissociation occurs. This pathway results in less kinetic energy release and yields a positive β parameter. An intriguing isotope effect is revealed, which calls for further theoretical investigations.

Original languageEnglish
Pages (from-to)7105-7112
Number of pages8
JournalJournal of Chemical Physics
Volume109
Issue number17
DOIs
Publication statusPublished - 1998
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'VUV photochemistry of CH4 and isotopomers. I. Dynamics and dissociation pathway of the H/D-atom elimination channel'. Together they form a unique fingerprint.

Cite this