Vibrational communication between a myrmecophilous butterfly Spindasis lohita (Lepidoptera: Lycaenidae) and its host ant Crematogaster rogenhoferi (Hymenoptera: Formicidae)

Yueh Hsien Lin, Yi Chang Liao, Chin Cheng Scotty Yang, Johan Billen, Man Miao Yang, Yu Feng Hsu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Ants are a dominant insect group in terrestrial ecosystems and many myrmecophilous species evolve to associate with ants to gain benefits. One iconic example is myrmecophilous butterflies that often produce ant-mimicking vibrational calls to modulate ant behaviors. Despite its popularity, empirical exploration of how butterflies utilize vibrational signals to communicate with ants is scarce. In this study, we reported that the myrmecophilous butterfly Spindasis lohita produce three types of larval calls and one type of pupal call, while its tending ant, Crematogaster rogenhoferi emit a single type of call. The results of discriminant analysis revealed that calls of the two species are quantitatively similar in their signal attributes; the potential role of butterfly calls are further confirmed by the playback experiments in which certain ant behaviors including antennation, aggregation, and guarding were induced when one of the butterfly calls was played to C. rogenhoferi workers. The findings in the current study represent the very first evidence on vibrational communication between Spindasis and Crematogaster and also imply that S. lohita may have been benefited from ant attendance due to the ability to produce similar calls of the ant C. rogenhoferi.

Original languageEnglish
Article number18548
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Vibrational communication between a myrmecophilous butterfly Spindasis lohita (Lepidoptera: Lycaenidae) and its host ant Crematogaster rogenhoferi (Hymenoptera: Formicidae)'. Together they form a unique fingerprint.

Cite this