TY - JOUR
T1 - Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific ocean for typhoon-intensity forecast
AU - Pun, Iam Fei
AU - Lin, I. I.
AU - Wu, Chau Ron
AU - Ko, Dong Shan
AU - Liu, W. Timothy
PY - 2007/6
Y1 - 2007/6
N2 - This paper uses more than 5000 colocated and near-coincident in-situ profiles from the National Oceanic and Atmospheric Administration/Global Temperature and Salinity Profile Program database spanning over the period from 2002 to 2005 to systematically validate the satellite-altimetry-derived upper ocean thermal structure in the western North Pacific ocean as such ocean thermal structure information is critical in typhoon-intensity change. It is found that this satellite-derived information is applicable in the central and the southwestern North Pacific (covering 122-170° E, 9-25°N) but not in the northern part (130-170°E, 25-40°N). However, since > 80% of the typhoons are found to intensify in the central and southern part, this regional dependence should not pose a serious constraint in studying typhoon intensification. Further comparison with the U.S. Naval Research Laboratory's North Pacific Ocean Nowcast/Forecast System (NPACNFS) hydrodynamic ocean model shows similar regional applicability, but NPACNFS is found to have a general underestimation in the upper ocean thermal structure and causes a large underestimation of the tropical cyclone heat potential (TCHP) by up to 60 kJ/cm2. After validation, the derived upper ocean thermal profiles are used to study the intensity change of supertyphoon Dianmu (2004). It is found that two upper ocean parameters, i.e., a typhoon's self-induced cooling and the during-typhoon TCHP, are the most sensitive parameters (with R2 ∼ 0.7) to the 6-h intensity change of Dianmu during the study period covering Dianmu's rapid intensification to category 5 and its subsequent decay to category 4. This paper suggests the usefulness of satellite-based upper ocean thermal information in future research and operation that is related to typhoon-intensity change in the western North Pacific.
AB - This paper uses more than 5000 colocated and near-coincident in-situ profiles from the National Oceanic and Atmospheric Administration/Global Temperature and Salinity Profile Program database spanning over the period from 2002 to 2005 to systematically validate the satellite-altimetry-derived upper ocean thermal structure in the western North Pacific ocean as such ocean thermal structure information is critical in typhoon-intensity change. It is found that this satellite-derived information is applicable in the central and the southwestern North Pacific (covering 122-170° E, 9-25°N) but not in the northern part (130-170°E, 25-40°N). However, since > 80% of the typhoons are found to intensify in the central and southern part, this regional dependence should not pose a serious constraint in studying typhoon intensification. Further comparison with the U.S. Naval Research Laboratory's North Pacific Ocean Nowcast/Forecast System (NPACNFS) hydrodynamic ocean model shows similar regional applicability, but NPACNFS is found to have a general underestimation in the upper ocean thermal structure and causes a large underestimation of the tropical cyclone heat potential (TCHP) by up to 60 kJ/cm2. After validation, the derived upper ocean thermal profiles are used to study the intensity change of supertyphoon Dianmu (2004). It is found that two upper ocean parameters, i.e., a typhoon's self-induced cooling and the during-typhoon TCHP, are the most sensitive parameters (with R2 ∼ 0.7) to the 6-h intensity change of Dianmu during the study period covering Dianmu's rapid intensification to category 5 and its subsequent decay to category 4. This paper suggests the usefulness of satellite-based upper ocean thermal information in future research and operation that is related to typhoon-intensity change in the western North Pacific.
KW - Altimetry
KW - Typhoon
KW - Upper ocean thermal structure
UR - http://www.scopus.com/inward/record.url?scp=34249817143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249817143&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2007.895950
DO - 10.1109/TGRS.2007.895950
M3 - Article
AN - SCOPUS:34249817143
SN - 0196-2892
VL - 45
SP - 1616
EP - 1630
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
IS - 6
ER -