Abstract
The quantum critical regimes (QCR) of both a two-dimensional (2D) disordered spin-12 antiferromagnet and a 2D clean dimerized quantum Heisenberg model are studied using the first-principles nonperturbative quantum Monte Carlo simulations. In particular, the three well-known universal coefficients associated with QCR are investigated in detail. While in our investigation we find the obtained results are consistent with the related analytic predictions, non-negligible finite-temperature (T) effects are observed. Moreover, a striking finding in our study is that the numerical value for one of the universal coefficients we determine is likely to be different significantly from the corresponding (theoretical) result(s) established in the literature. To better understand the sources for the discrepancy observed here, apart from carrying out the associated analytic calculations not considered previously, it will be desirable as well to conduct a comprehensive examination of the exotic features of QCR for other disordered and clean spin systems than those investigated in this study.
Original language | English |
---|---|
Article number | 245111 |
Journal | Physical Review B |
Volume | 98 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2018 Dec 10 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics