Abstract
The holemobility in a high Ge-content (110) SiGe inversion layer ismeasured and simulated by a split capacitance-voltage method and a quantized k p method, respectively. The calibrated model reproduces our experimental channelmobilitymeasurements for the biaxial compressive strain SiGe on (110) substrate.We also explore the impact of external mechanical uniaxial stress on the SiGe (110)p-channelmetal oxide semiconductor field effect transistor (PMOSFET). We obtained the corresponding piezoresistance coefficients of the SiGe (110) PMOSFET with external mechanical uniaxial stress parallel and perpendicular to the channel direction. Our study shows the effectiveness in combining externalmechanical uniaxial stress and intrinsic biaxial compressive strain for the SiGe (110) PMOSFET. Crown
Original language | English |
---|---|
Pages (from-to) | 487-490 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 544 |
DOIs | |
Publication status | Published - 2013 Oct 1 |
Keywords
- Mobility
- SiGe
- Split capacitance-voltage
- Strain
- Subband
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry