Uniaxial stress effect and hole mobility in high-Ge content strained SiGe (110) P-channel metal oxide semiconductor field effect transistors

S. Y. Cheng, Min-Hung Lee, S. T. Chang, C. Y. Lin, K. T. Chen, B. F. Hsieh

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    The holemobility in a high Ge-content (110) SiGe inversion layer ismeasured and simulated by a split capacitance-voltage method and a quantized k p method, respectively. The calibrated model reproduces our experimental channelmobilitymeasurements for the biaxial compressive strain SiGe on (110) substrate.We also explore the impact of external mechanical uniaxial stress on the SiGe (110)p-channelmetal oxide semiconductor field effect transistor (PMOSFET). We obtained the corresponding piezoresistance coefficients of the SiGe (110) PMOSFET with external mechanical uniaxial stress parallel and perpendicular to the channel direction. Our study shows the effectiveness in combining externalmechanical uniaxial stress and intrinsic biaxial compressive strain for the SiGe (110) PMOSFET. Crown

    Original languageEnglish
    Pages (from-to)487-490
    Number of pages4
    JournalThin Solid Films
    Volume544
    DOIs
    Publication statusPublished - 2013 Oct 1

    Fingerprint

    Hole mobility
    hole mobility
    MOSFET devices
    Field effect transistors
    metal oxide semiconductors
    field effect transistors
    oxides
    Inversion layers
    Capacitance
    capacitance
    inversions
    Electric potential
    electric potential
    Substrates
    coefficients
    Oxide semiconductors

    Keywords

    • Mobility
    • SiGe
    • Split capacitance-voltage
    • Strain
    • Subband

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Surfaces and Interfaces
    • Surfaces, Coatings and Films
    • Metals and Alloys
    • Materials Chemistry

    Cite this

    Uniaxial stress effect and hole mobility in high-Ge content strained SiGe (110) P-channel metal oxide semiconductor field effect transistors. / Cheng, S. Y.; Lee, Min-Hung; Chang, S. T.; Lin, C. Y.; Chen, K. T.; Hsieh, B. F.

    In: Thin Solid Films, Vol. 544, 01.10.2013, p. 487-490.

    Research output: Contribution to journalArticle

    @article{b08f6e1647d8434cb9f6039a50779dc7,
    title = "Uniaxial stress effect and hole mobility in high-Ge content strained SiGe (110) P-channel metal oxide semiconductor field effect transistors",
    abstract = "The holemobility in a high Ge-content (110) SiGe inversion layer ismeasured and simulated by a split capacitance-voltage method and a quantized k p method, respectively. The calibrated model reproduces our experimental channelmobilitymeasurements for the biaxial compressive strain SiGe on (110) substrate.We also explore the impact of external mechanical uniaxial stress on the SiGe (110)p-channelmetal oxide semiconductor field effect transistor (PMOSFET). We obtained the corresponding piezoresistance coefficients of the SiGe (110) PMOSFET with external mechanical uniaxial stress parallel and perpendicular to the channel direction. Our study shows the effectiveness in combining externalmechanical uniaxial stress and intrinsic biaxial compressive strain for the SiGe (110) PMOSFET. Crown",
    keywords = "Mobility, SiGe, Split capacitance-voltage, Strain, Subband",
    author = "Cheng, {S. Y.} and Min-Hung Lee and Chang, {S. T.} and Lin, {C. Y.} and Chen, {K. T.} and Hsieh, {B. F.}",
    year = "2013",
    month = "10",
    day = "1",
    doi = "10.1016/j.tsf.2013.02.070",
    language = "English",
    volume = "544",
    pages = "487--490",
    journal = "Thin Solid Films",
    issn = "0040-6090",
    publisher = "Elsevier",

    }

    TY - JOUR

    T1 - Uniaxial stress effect and hole mobility in high-Ge content strained SiGe (110) P-channel metal oxide semiconductor field effect transistors

    AU - Cheng, S. Y.

    AU - Lee, Min-Hung

    AU - Chang, S. T.

    AU - Lin, C. Y.

    AU - Chen, K. T.

    AU - Hsieh, B. F.

    PY - 2013/10/1

    Y1 - 2013/10/1

    N2 - The holemobility in a high Ge-content (110) SiGe inversion layer ismeasured and simulated by a split capacitance-voltage method and a quantized k p method, respectively. The calibrated model reproduces our experimental channelmobilitymeasurements for the biaxial compressive strain SiGe on (110) substrate.We also explore the impact of external mechanical uniaxial stress on the SiGe (110)p-channelmetal oxide semiconductor field effect transistor (PMOSFET). We obtained the corresponding piezoresistance coefficients of the SiGe (110) PMOSFET with external mechanical uniaxial stress parallel and perpendicular to the channel direction. Our study shows the effectiveness in combining externalmechanical uniaxial stress and intrinsic biaxial compressive strain for the SiGe (110) PMOSFET. Crown

    AB - The holemobility in a high Ge-content (110) SiGe inversion layer ismeasured and simulated by a split capacitance-voltage method and a quantized k p method, respectively. The calibrated model reproduces our experimental channelmobilitymeasurements for the biaxial compressive strain SiGe on (110) substrate.We also explore the impact of external mechanical uniaxial stress on the SiGe (110)p-channelmetal oxide semiconductor field effect transistor (PMOSFET). We obtained the corresponding piezoresistance coefficients of the SiGe (110) PMOSFET with external mechanical uniaxial stress parallel and perpendicular to the channel direction. Our study shows the effectiveness in combining externalmechanical uniaxial stress and intrinsic biaxial compressive strain for the SiGe (110) PMOSFET. Crown

    KW - Mobility

    KW - SiGe

    KW - Split capacitance-voltage

    KW - Strain

    KW - Subband

    UR - http://www.scopus.com/inward/record.url?scp=84901855012&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84901855012&partnerID=8YFLogxK

    U2 - 10.1016/j.tsf.2013.02.070

    DO - 10.1016/j.tsf.2013.02.070

    M3 - Article

    AN - SCOPUS:84901855012

    VL - 544

    SP - 487

    EP - 490

    JO - Thin Solid Films

    JF - Thin Solid Films

    SN - 0040-6090

    ER -