TY - JOUR
T1 - Two-by-two upper triangular matrices and Morrey’s conjecture
AU - Harris, Terence L.J.
AU - Kirchheim, Bernd
AU - Lin, Chun Chi
N1 - Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - It is shown that every homogeneous gradient Young measure supported on matrices of the form (a1,1⋯a1,n-1a1,n0⋯0a2,n) is a laminate. This is used to prove the same result on the 3-dimensional nonlinear submanifold of M2 × 2 defined by det X= 0 and X12> 0.
AB - It is shown that every homogeneous gradient Young measure supported on matrices of the form (a1,1⋯a1,n-1a1,n0⋯0a2,n) is a laminate. This is used to prove the same result on the 3-dimensional nonlinear submanifold of M2 × 2 defined by det X= 0 and X12> 0.
KW - 49J45
UR - http://www.scopus.com/inward/record.url?scp=85045966228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045966228&partnerID=8YFLogxK
U2 - 10.1007/s00526-018-1360-8
DO - 10.1007/s00526-018-1360-8
M3 - Article
AN - SCOPUS:85045966228
SN - 0944-2669
VL - 57
JO - Calculus of Variations and Partial Differential Equations
JF - Calculus of Variations and Partial Differential Equations
IS - 3
M1 - 73
ER -