Abstract
Cognitive radio ad hoc network (CRAHN) is considered as a key technology to enhance the spectrum efficiency for diverse applications. However, due to the opportunistic links, the intrinsic randomness of the CRAHN makes the traditional precise control of the end-to-end transmission unscalable and generally infeasible. The recently-proposed virtual multiple-input multiple-output (MIMO) framework exploits the multipath routing to create the diversity at the network layer. With only local information and no feedback control channel, the path-time code (PTC) of the virtual MIMO system is able to efficiently provide the error resilient end-to-end transmission. In particular, while the transmission latency should be minimized, more attempts for accessing the opportunistic links can be made if a larger latency is allowed, which improves the error rate performance of the end-to-end transmission. By theoretically analyzing the error rate performance and erasure statistics, we propose a design guideline to determine the waiting period as the limit of the transmission latency. This designed waiting period not only preserves the diversity gained by the PTC but also provides a low transmission latency, resulting in a good balance of the reliability-latency trade-off of the end-to-end PTC transmission in CRAHNs.
Original language | English |
---|---|
Article number | 7036953 |
Pages (from-to) | 1084-1089 |
Number of pages | 6 |
Journal | Proceedings - IEEE Global Communications Conference, GLOBECOM |
DOIs | |
Publication status | Published - 2014 |
Externally published | Yes |
Event | 2014 IEEE Global Communications Conference, GLOBECOM 2014 - Austin, United States Duration: 2014 Dec 8 → 2014 Dec 12 |
Keywords
- Cognitive radio ad hoc networks (CRAHNs)
- PEP analysis
- erasure channel
- path-time code (PTC)
- space-time code (STC)
- virtual multiple-input and multiple-output (MIMO)
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing