Toward Long-Term Stable and Efficient Large-Area Organic Solar Cells

Pei Ting Tsai, Kuan Chu Lin, Cheng Yu Wu, Chung Hung Liao, Man Chun Lin, Ying Qian Wong, Hsin Fei Meng*, Chih Yu Chang, Chien Lung Wang, Yi Fan Huang, Sheng Fu Horng, Hsiao Wen Zan, Yu Chiang Chao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Here, we report that long-term stable and efficient organic solar cells (OSCs) can be obtained through the following strategies: i) combination of rapid-drying blade-coating deposition with an appropriate thermal annealing treatment to obtain an optimized morphology of the active layer; ii) insertion of interfacial layers to optimize the interfacial properties. The resulting devices based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl)] (PBDTTT-EFT):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) blend as the active layer exhibits a power conversion efficiency (PCE) up to 9.57 %, which represents the highest efficiency ever reported for blade-coated OSCs. Importantly, the conventional structure devices based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blend can retain approximately 65 % of their initial PCE for almost 2 years under operating conditions, which is the best result ever reported for long-term stable OSCs under operational conditions. More encouragingly, long-term stable large-area OSCs (active area=216 cm2) based on P3HT:PCBM blend are also demonstrated. Our findings represent an important step toward the development of large-area OSCs with high performance and long-term stability.

Original languageEnglish
Pages (from-to)2778-2787
Number of pages10
JournalChemSusChem
Volume10
Issue number13
DOIs
Publication statusPublished - 2017 Jul 10
Externally publishedYes

Keywords

  • annealing
  • blade coating
  • organic solar cells
  • power conversion efficiency
  • stability

ASJC Scopus subject areas

  • Environmental Chemistry
  • General Chemical Engineering
  • General Materials Science
  • General Energy

Fingerprint

Dive into the research topics of 'Toward Long-Term Stable and Efficient Large-Area Organic Solar Cells'. Together they form a unique fingerprint.

Cite this