TY - JOUR
T1 - Tidal pull of the Earth strips the proto-Moon of its volatiles
AU - Charnoz, Sébastien
AU - Sossi, Paolo A.
AU - Lee, Yueh Ning
AU - Siebert, Julien
AU - Hyodo, Ryuki
AU - Allibert, Laetitia
AU - Pignatale, Francesco C.
AU - Landeau, Maylis
AU - Oza, Apurva V.
AU - Moynier, Frédéric
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/8
Y1 - 2021/8
N2 - Prevailing models for the formation of the Moon invoke a giant impact between a planetary embryo and the proto-Earth (Canup, 2004; Ćuk et al., 2016). Despite similarities in the isotopic and chemical abundances of refractory elements compared to Earth's mantle, the Moon is depleted in volatiles (Wolf and Anders, 1980). Current models favour devolatilisation via incomplete condensation of the proto-Moon in an Earth-Moon debris-disk (Charnoz and Michaut, 2015; Canup et al., 2015; Lock et al., 2018). However the physics of this protolunar disk is poorly understood and thermal escape of gas is inhibited by the Earth's strong gravitational field (Nakajima and Stevenson, 2014). Here we investigate a simple process, wherein the Earth's tidal pull promotes intense hydrodynamic escape from the liquid surface of a molten proto-Moon assembling at 3–6 Earth radii. Such tidally-driven atmospheric escape persisting for less than 1 Kyr at temperatures ~1600 − 1700 K reproduces the measured lunar depletion in K and Na, assuming the escape starts just above the liquid surface. These results are also in accord with timescales for the rapid solidification of a plagioclase lid at the surface of a lunar magma ocean (Elkins-Tanton et al., 2011). We find that hydrodynamic escape, both in an adiabatic or isothermal regime, with or without condensation, induces advective transport of gas away from the lunar surface, causing a decrease in the partial pressures of gas species (Ps) with respect to their equilibrium values (Psat). The observed enrichment in heavy stable isotopes of Zn and K (Paniello et al., 2012; Wang and Jacobsen, 2016) constrain Ps/Psat > 0.99, favouring a scenario in which volatile loss occurred at low hydrodynamic wind velocities (<1% of the sound velocity) and thus low temperatures. We conclude that tidally-driven atmospheric escape is an unavoidable consequence of the Moon's assembly under the gravitational influence of the Earth, and provides new pathways toward understanding lunar formation.
AB - Prevailing models for the formation of the Moon invoke a giant impact between a planetary embryo and the proto-Earth (Canup, 2004; Ćuk et al., 2016). Despite similarities in the isotopic and chemical abundances of refractory elements compared to Earth's mantle, the Moon is depleted in volatiles (Wolf and Anders, 1980). Current models favour devolatilisation via incomplete condensation of the proto-Moon in an Earth-Moon debris-disk (Charnoz and Michaut, 2015; Canup et al., 2015; Lock et al., 2018). However the physics of this protolunar disk is poorly understood and thermal escape of gas is inhibited by the Earth's strong gravitational field (Nakajima and Stevenson, 2014). Here we investigate a simple process, wherein the Earth's tidal pull promotes intense hydrodynamic escape from the liquid surface of a molten proto-Moon assembling at 3–6 Earth radii. Such tidally-driven atmospheric escape persisting for less than 1 Kyr at temperatures ~1600 − 1700 K reproduces the measured lunar depletion in K and Na, assuming the escape starts just above the liquid surface. These results are also in accord with timescales for the rapid solidification of a plagioclase lid at the surface of a lunar magma ocean (Elkins-Tanton et al., 2011). We find that hydrodynamic escape, both in an adiabatic or isothermal regime, with or without condensation, induces advective transport of gas away from the lunar surface, causing a decrease in the partial pressures of gas species (Ps) with respect to their equilibrium values (Psat). The observed enrichment in heavy stable isotopes of Zn and K (Paniello et al., 2012; Wang and Jacobsen, 2016) constrain Ps/Psat > 0.99, favouring a scenario in which volatile loss occurred at low hydrodynamic wind velocities (<1% of the sound velocity) and thus low temperatures. We conclude that tidally-driven atmospheric escape is an unavoidable consequence of the Moon's assembly under the gravitational influence of the Earth, and provides new pathways toward understanding lunar formation.
KW - Moon
KW - Planet formation
UR - http://www.scopus.com/inward/record.url?scp=85104362464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104362464&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2021.114451
DO - 10.1016/j.icarus.2021.114451
M3 - Article
AN - SCOPUS:85104362464
SN - 0019-1035
VL - 364
JO - Icarus
JF - Icarus
M1 - 114451
ER -