TY - CHAP
T1 - The Panjal Traps
AU - Shellnutt, J. Gregory
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018
Y1 - 2018
N2 - The Early Permian (290 Ma) Panjal Traps are the largest contiguous outcropping of volcanic (basaltic, andesitic and silicic) rocks within the Himalaya that are associated with the Late Palaeozoic break-up of Gondwana. The basaltic Panjal Traps have compositional characteristics that range from continental tholeiite to ocean-floor basalt but it is clear that crustal contamination has played a role in their genesis. The basalts that show limited evidence for contamination have Sr-Nd isotopes (87Sr/86Sri = 0.7043-0.7073; εNd(t) = 0 ± 1) similar to a chondritic (subcontinental lithospheric mantle) source, whereas the remaining basaltic rocks have a wide range of Nd (εNd(t) = -6.1 to +4.3) and Sr (87Sr/86Sri = 0.7051-0.7185) isotopic values. The primary melt composition of the low-Ti Panjal Traps is picritic with mantle potential temperatures (TP = 1400°C to 1450°C) similar to ambient mantle. The silicic volcanic rocks were derived by partial melting of the crust, whereas the andesitic rocks were derived by mingling between crustal and mantle melts. The Panjal Traps initially erupted within a continental rift setting. The rift eventually transitioned into a nascent ocean basin that led to seafloor spreading and the formation of the Neotethys Ocean and the ribbonlike continent Cimmeria.
AB - The Early Permian (290 Ma) Panjal Traps are the largest contiguous outcropping of volcanic (basaltic, andesitic and silicic) rocks within the Himalaya that are associated with the Late Palaeozoic break-up of Gondwana. The basaltic Panjal Traps have compositional characteristics that range from continental tholeiite to ocean-floor basalt but it is clear that crustal contamination has played a role in their genesis. The basalts that show limited evidence for contamination have Sr-Nd isotopes (87Sr/86Sri = 0.7043-0.7073; εNd(t) = 0 ± 1) similar to a chondritic (subcontinental lithospheric mantle) source, whereas the remaining basaltic rocks have a wide range of Nd (εNd(t) = -6.1 to +4.3) and Sr (87Sr/86Sri = 0.7051-0.7185) isotopic values. The primary melt composition of the low-Ti Panjal Traps is picritic with mantle potential temperatures (TP = 1400°C to 1450°C) similar to ambient mantle. The silicic volcanic rocks were derived by partial melting of the crust, whereas the andesitic rocks were derived by mingling between crustal and mantle melts. The Panjal Traps initially erupted within a continental rift setting. The rift eventually transitioned into a nascent ocean basin that led to seafloor spreading and the formation of the Neotethys Ocean and the ribbonlike continent Cimmeria.
UR - http://www.scopus.com/inward/record.url?scp=85042670335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042670335&partnerID=8YFLogxK
U2 - 10.1144/SP463.4
DO - 10.1144/SP463.4
M3 - Chapter
AN - SCOPUS:85042670335
T3 - Geological Society Special Publication
SP - 59
EP - 86
BT - Geological Society Special Publication
PB - Geological Society of London
ER -