The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models

Fang Ching Chien, Jing Shan Hong, Ying Hwa Kuo

Research output: Contribution to journalArticle

Abstract

This paper estimates marine boundary layer height (MBLH) over the western North Pacific (WNP) based on Global Positioning System Radio Occultation (GPS-RO) profiles from the Formosa Satellite Mission 3 (FORMOSAT-3)/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, island soundings, and numerical models. The seasonally-averaged MBLHs computed from nine years (2007–2015) of GPS-RO data are inter-compared with those obtained from sounding observations at 15 island stations and from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim) and National Centers for Environmental Prediction Global Forecast System (NCEP GFS) data over the WNP from 2012 to 2015. It is found that the MBLH using nine years of GPS-RO data is smoother and more consistent with that obtained from sounding observations than is the MBLH using four years of GPS-RO data in a previous study. In winter, higher MBLHs are found around the subtropical latitudes and over oceans east of Japan, which are approximately located within the paths of the North Equatorial Current and the Kuroshio Current. The MBLH is also significantly higher in winter than in summer over the WNP. The above MBLH pattern is generally similar to those obtained from the analysis data of the ERA-Interim and NCEP GFS, but the heights are about 200 m higher. The verification with soundings suggests that the ERA-Interim has a better MBLH estimation than the NCEP GFS. Thus, the MBLH distributions obtained from both the nine-year GPS-RO and the ERA-Interim data can represent well the climatological MBLH over the WNP, but the heights should be adjusted about 30 m lower for the former and ~200 m higher for the latter. A positive correlation between the MBLH and the instability of the lower atmosphere exists over large near-shore areas of the WNP, where cold air can move over warm oceans from the land in winter, resulting in an increase in lower-atmospheric instability and providing favorable conditions for convection to yield a higher MBLH. During summer, the lower-atmospheric instability becomes smaller and the MBLH is thus lower over near-shore oceans.

Original languageEnglish
Article number155
JournalSensors (Switzerland)
Volume19
Issue number1
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

radio occultation
Geographic Information Systems
sounding
Radio
Islands
Global positioning system
Numerical models
boundary layers
Boundary layers
Oceans and Seas
Global Positioning System
forecasting
Meteorology
Convection
Weather
winter
Climate
Atmosphere
Taiwan
Information Systems

Keywords

  • FORMOSAT-3/COSMIC
  • GPS radio occultation
  • Marine boundary layer height

ASJC Scopus subject areas

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this

The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models. / Chien, Fang Ching; Hong, Jing Shan; Kuo, Ying Hwa.

In: Sensors (Switzerland), Vol. 19, No. 1, 155, 01.01.2019.

Research output: Contribution to journalArticle

@article{2658ff9ad7b24305a9bbe6d74b114537,
title = "The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models",
abstract = "This paper estimates marine boundary layer height (MBLH) over the western North Pacific (WNP) based on Global Positioning System Radio Occultation (GPS-RO) profiles from the Formosa Satellite Mission 3 (FORMOSAT-3)/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, island soundings, and numerical models. The seasonally-averaged MBLHs computed from nine years (2007–2015) of GPS-RO data are inter-compared with those obtained from sounding observations at 15 island stations and from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim) and National Centers for Environmental Prediction Global Forecast System (NCEP GFS) data over the WNP from 2012 to 2015. It is found that the MBLH using nine years of GPS-RO data is smoother and more consistent with that obtained from sounding observations than is the MBLH using four years of GPS-RO data in a previous study. In winter, higher MBLHs are found around the subtropical latitudes and over oceans east of Japan, which are approximately located within the paths of the North Equatorial Current and the Kuroshio Current. The MBLH is also significantly higher in winter than in summer over the WNP. The above MBLH pattern is generally similar to those obtained from the analysis data of the ERA-Interim and NCEP GFS, but the heights are about 200 m higher. The verification with soundings suggests that the ERA-Interim has a better MBLH estimation than the NCEP GFS. Thus, the MBLH distributions obtained from both the nine-year GPS-RO and the ERA-Interim data can represent well the climatological MBLH over the WNP, but the heights should be adjusted about 30 m lower for the former and ~200 m higher for the latter. A positive correlation between the MBLH and the instability of the lower atmosphere exists over large near-shore areas of the WNP, where cold air can move over warm oceans from the land in winter, resulting in an increase in lower-atmospheric instability and providing favorable conditions for convection to yield a higher MBLH. During summer, the lower-atmospheric instability becomes smaller and the MBLH is thus lower over near-shore oceans.",
keywords = "FORMOSAT-3/COSMIC, GPS radio occultation, Marine boundary layer height",
author = "Chien, {Fang Ching} and Hong, {Jing Shan} and Kuo, {Ying Hwa}",
year = "2019",
month = "1",
day = "1",
doi = "10.3390/s19010155",
language = "English",
volume = "19",
journal = "Sensors (Switzerland)",
issn = "1424-3210",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "1",

}

TY - JOUR

T1 - The marine boundary layer height over the western north pacific based on GPS radio occultation, island soundings, and numerical models

AU - Chien, Fang Ching

AU - Hong, Jing Shan

AU - Kuo, Ying Hwa

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This paper estimates marine boundary layer height (MBLH) over the western North Pacific (WNP) based on Global Positioning System Radio Occultation (GPS-RO) profiles from the Formosa Satellite Mission 3 (FORMOSAT-3)/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, island soundings, and numerical models. The seasonally-averaged MBLHs computed from nine years (2007–2015) of GPS-RO data are inter-compared with those obtained from sounding observations at 15 island stations and from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim) and National Centers for Environmental Prediction Global Forecast System (NCEP GFS) data over the WNP from 2012 to 2015. It is found that the MBLH using nine years of GPS-RO data is smoother and more consistent with that obtained from sounding observations than is the MBLH using four years of GPS-RO data in a previous study. In winter, higher MBLHs are found around the subtropical latitudes and over oceans east of Japan, which are approximately located within the paths of the North Equatorial Current and the Kuroshio Current. The MBLH is also significantly higher in winter than in summer over the WNP. The above MBLH pattern is generally similar to those obtained from the analysis data of the ERA-Interim and NCEP GFS, but the heights are about 200 m higher. The verification with soundings suggests that the ERA-Interim has a better MBLH estimation than the NCEP GFS. Thus, the MBLH distributions obtained from both the nine-year GPS-RO and the ERA-Interim data can represent well the climatological MBLH over the WNP, but the heights should be adjusted about 30 m lower for the former and ~200 m higher for the latter. A positive correlation between the MBLH and the instability of the lower atmosphere exists over large near-shore areas of the WNP, where cold air can move over warm oceans from the land in winter, resulting in an increase in lower-atmospheric instability and providing favorable conditions for convection to yield a higher MBLH. During summer, the lower-atmospheric instability becomes smaller and the MBLH is thus lower over near-shore oceans.

AB - This paper estimates marine boundary layer height (MBLH) over the western North Pacific (WNP) based on Global Positioning System Radio Occultation (GPS-RO) profiles from the Formosa Satellite Mission 3 (FORMOSAT-3)/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, island soundings, and numerical models. The seasonally-averaged MBLHs computed from nine years (2007–2015) of GPS-RO data are inter-compared with those obtained from sounding observations at 15 island stations and from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim) and National Centers for Environmental Prediction Global Forecast System (NCEP GFS) data over the WNP from 2012 to 2015. It is found that the MBLH using nine years of GPS-RO data is smoother and more consistent with that obtained from sounding observations than is the MBLH using four years of GPS-RO data in a previous study. In winter, higher MBLHs are found around the subtropical latitudes and over oceans east of Japan, which are approximately located within the paths of the North Equatorial Current and the Kuroshio Current. The MBLH is also significantly higher in winter than in summer over the WNP. The above MBLH pattern is generally similar to those obtained from the analysis data of the ERA-Interim and NCEP GFS, but the heights are about 200 m higher. The verification with soundings suggests that the ERA-Interim has a better MBLH estimation than the NCEP GFS. Thus, the MBLH distributions obtained from both the nine-year GPS-RO and the ERA-Interim data can represent well the climatological MBLH over the WNP, but the heights should be adjusted about 30 m lower for the former and ~200 m higher for the latter. A positive correlation between the MBLH and the instability of the lower atmosphere exists over large near-shore areas of the WNP, where cold air can move over warm oceans from the land in winter, resulting in an increase in lower-atmospheric instability and providing favorable conditions for convection to yield a higher MBLH. During summer, the lower-atmospheric instability becomes smaller and the MBLH is thus lower over near-shore oceans.

KW - FORMOSAT-3/COSMIC

KW - GPS radio occultation

KW - Marine boundary layer height

UR - http://www.scopus.com/inward/record.url?scp=85059542578&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059542578&partnerID=8YFLogxK

U2 - 10.3390/s19010155

DO - 10.3390/s19010155

M3 - Article

VL - 19

JO - Sensors (Switzerland)

JF - Sensors (Switzerland)

SN - 1424-3210

IS - 1

M1 - 155

ER -