The gap state density of micro/nano-crystalline silicon active layer on flexible substrate

M. H. Lee, S. T. Chang, C. C. Lee, J. J. Huang, G. R. Hu, Y. S. Huang

    Research output: Contribution to journalArticlepeer-review

    2 Citations (Scopus)

    Abstract

    The gap state density of micro/nano-crystalline silicon active layer on flexible substrate will be redistributed with mechanical bending. The weak or broken bonds may contribute to the redistribution of trap states. During mechanical strain, the deep states are redistributed in a Gaussian distribution, and are dissimilar to ordinary acceptor-like deep states which manifest with exponential distributions. We conclude that the DOS of a μc-Si:H layer under mechanical strain is the fundamental reliability issue for the development of flexible electronics.

    Original languageEnglish
    Pages (from-to)S246-S249
    JournalThin Solid Films
    Volume518
    Issue number6 SUPPL. 1
    DOIs
    Publication statusPublished - 2010 Jan 1

    Keywords

    • Deep state
    • Flexible
    • Mechanical strain
    • Redistribution

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Surfaces and Interfaces
    • Surfaces, Coatings and Films
    • Metals and Alloys
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'The gap state density of micro/nano-crystalline silicon active layer on flexible substrate'. Together they form a unique fingerprint.

    Cite this