The gap state density of micro/nano-crystalline silicon active layer on flexible substrate

Min-Hung Lee, S. T. Chang, C. C. Lee, J. J. Huang, G. R. Hu, Y. S. Huang

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The gap state density of micro/nano-crystalline silicon active layer on flexible substrate will be redistributed with mechanical bending. The weak or broken bonds may contribute to the redistribution of trap states. During mechanical strain, the deep states are redistributed in a Gaussian distribution, and are dissimilar to ordinary acceptor-like deep states which manifest with exponential distributions. We conclude that the DOS of a μc-Si:H layer under mechanical strain is the fundamental reliability issue for the development of flexible electronics.

Original languageEnglish
JournalThin Solid Films
Volume518
Issue number6 SUPPL. 1
DOIs
Publication statusPublished - 2010 Jan 1

Fingerprint

Nanocrystalline silicon
Flexible electronics
DOS
Gaussian distribution
silicon
Substrates
normal density functions
traps
electronics

Keywords

  • Deep state
  • Flexible
  • Mechanical strain
  • Redistribution

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Cite this

The gap state density of micro/nano-crystalline silicon active layer on flexible substrate. / Lee, Min-Hung; Chang, S. T.; Lee, C. C.; Huang, J. J.; Hu, G. R.; Huang, Y. S.

In: Thin Solid Films, Vol. 518, No. 6 SUPPL. 1, 01.01.2010.

Research output: Contribution to journalArticle

Lee, Min-Hung ; Chang, S. T. ; Lee, C. C. ; Huang, J. J. ; Hu, G. R. ; Huang, Y. S. / The gap state density of micro/nano-crystalline silicon active layer on flexible substrate. In: Thin Solid Films. 2010 ; Vol. 518, No. 6 SUPPL. 1.
@article{e485739573e14bb6b16541859e7641d7,
title = "The gap state density of micro/nano-crystalline silicon active layer on flexible substrate",
abstract = "The gap state density of micro/nano-crystalline silicon active layer on flexible substrate will be redistributed with mechanical bending. The weak or broken bonds may contribute to the redistribution of trap states. During mechanical strain, the deep states are redistributed in a Gaussian distribution, and are dissimilar to ordinary acceptor-like deep states which manifest with exponential distributions. We conclude that the DOS of a μc-Si:H layer under mechanical strain is the fundamental reliability issue for the development of flexible electronics.",
keywords = "Deep state, Flexible, Mechanical strain, Redistribution",
author = "Min-Hung Lee and Chang, {S. T.} and Lee, {C. C.} and Huang, {J. J.} and Hu, {G. R.} and Huang, {Y. S.}",
year = "2010",
month = "1",
day = "1",
doi = "10.1016/j.tsf.2009.10.099",
language = "English",
volume = "518",
journal = "Thin Solid Films",
issn = "0040-6090",
publisher = "Elsevier",
number = "6 SUPPL. 1",

}

TY - JOUR

T1 - The gap state density of micro/nano-crystalline silicon active layer on flexible substrate

AU - Lee, Min-Hung

AU - Chang, S. T.

AU - Lee, C. C.

AU - Huang, J. J.

AU - Hu, G. R.

AU - Huang, Y. S.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - The gap state density of micro/nano-crystalline silicon active layer on flexible substrate will be redistributed with mechanical bending. The weak or broken bonds may contribute to the redistribution of trap states. During mechanical strain, the deep states are redistributed in a Gaussian distribution, and are dissimilar to ordinary acceptor-like deep states which manifest with exponential distributions. We conclude that the DOS of a μc-Si:H layer under mechanical strain is the fundamental reliability issue for the development of flexible electronics.

AB - The gap state density of micro/nano-crystalline silicon active layer on flexible substrate will be redistributed with mechanical bending. The weak or broken bonds may contribute to the redistribution of trap states. During mechanical strain, the deep states are redistributed in a Gaussian distribution, and are dissimilar to ordinary acceptor-like deep states which manifest with exponential distributions. We conclude that the DOS of a μc-Si:H layer under mechanical strain is the fundamental reliability issue for the development of flexible electronics.

KW - Deep state

KW - Flexible

KW - Mechanical strain

KW - Redistribution

UR - http://www.scopus.com/inward/record.url?scp=73649135406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=73649135406&partnerID=8YFLogxK

U2 - 10.1016/j.tsf.2009.10.099

DO - 10.1016/j.tsf.2009.10.099

M3 - Article

AN - SCOPUS:73649135406

VL - 518

JO - Thin Solid Films

JF - Thin Solid Films

SN - 0040-6090

IS - 6 SUPPL. 1

ER -