The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean

Yu Lin Chang*, Yasumasa Miyazawa, Lie Yauw Oey, Tsubasa Kodaira, Shihming Huang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > −70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (∼3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.

Original languageEnglish
Pages (from-to)4444-4455
Number of pages12
JournalJournal of Geophysical Research: Oceans
Volume122
Issue number5
DOIs
Publication statusPublished - 2017 May 1

Keywords

  • mesoscale eddies
  • phytoplankton
  • vertical velocity

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Oceanography

Fingerprint

Dive into the research topics of 'The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean'. Together they form a unique fingerprint.

Cite this