Abstract
A novel series of ternary antimony–chalcogen iron carbonyl clusters, [{SbTeFe3(CO)9}{Te2Fe3(CO)9}]– (1), [{SbSeFe3(CO)9}{Se2Fe2(CO)6}]– (2), and [{SbSFe3(CO)9}{SFe3(CO)9}]– (3), were synthesized in moderate yields from reactions of [EFe3(CO)9]2– (E = Te, Se, S) with SbCl3. X-ray analyses revealed that complexes 1–3 each can be viewed as a square pyramidal geometry [SbEFe3(CO)9] (E = Te, Se, S), where the Sb atom was further coordinated with pendant cluster fragments [Te2Fe3(CO)9], [Se2Fe2(CO)6], and [SFe3(CO)9], respectively. Interestingly, the oxidation state of the Sb atom in complexes 1–3 was 0, which was evidenced by XPS and XANES. Complexes 1–3 showed high electrophilicity toward a series of metal carbonylates, which produced transmetallated products, the “spiked” square pyramidal complexes [{SbEFe3(CO)9}{M(CO)x}] [M(CO)x = Fe(CO)4, E = Te, 1-Fe; Se, 2-Fe; S, 3-Fe; M(CO)x = Cr(CO)5, Se, 2-Cr; S, 3-Cr] and the Mn(CO)4-bridged di-ESbFe3(CO)9-based clusters [{SbEFe3(CO)9}2Mn(CO)4]– (E = Se, 2-Mn; S, 3-Mn). Furthermore, the diffuse reflectance spectra showed that these ternary and quaternary antimony-chalcogenide metal carbonyl clusters possessed low energy gaps of 0.84–1.48 eV, suggesting possible electron transports within the frameworks, which was supported by crystal packings and DFT calculations.
Original language | English |
---|---|
Article number | 121717 |
Journal | Journal of Organometallic Chemistry |
Volume | 937 |
DOIs | |
Publication status | Published - 2021 Apr 1 |
Keywords
- Antimony
- Carbonyl
- Chalcogen
- Heterometallic
- Iron
ASJC Scopus subject areas
- Biochemistry
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
- Materials Chemistry
Fingerprint
Dive into the research topics of 'Ternary antimony–chalcogen iron carbonyl complexes and their derivatives: Syntheses, structures, reactivities, and low-energy-gap characteristics'. Together they form a unique fingerprint.Datasets
-
CCDC 2048445: Experimental Crystal Structure Determination
Yeh, H. (Contributor), Hsu, M. (Contributor), Li, Y. (Contributor), Hsu, Y. (Contributor), Shr, F. (Contributor) & Shieh, M. (Contributor), The Cambridge Structural Database, 2021
DOI: 10.5517/ccdc.csd.cc26rkwf, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26rkwf&sid=DataCite
Dataset
-
CCDC 2048448: Experimental Crystal Structure Determination
Yeh, H. (Contributor), Hsu, M. (Contributor), Li, Y. (Contributor), Hsu, Y. (Contributor), Shr, F. (Contributor) & Shieh, M. (Contributor), The Cambridge Structural Database, 2021
DOI: 10.5517/ccdc.csd.cc26rkzj, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26rkzj&sid=DataCite
Dataset
-
CCDC 2048441: Experimental Crystal Structure Determination
Yeh, H. (Contributor), Hsu, M. (Contributor), Li, Y. (Contributor), Hsu, Y. (Contributor), Shr, F. (Contributor) & Shieh, M. (Contributor), The Cambridge Structural Database, 2021
DOI: 10.5517/ccdc.csd.cc26rkr9, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc26rkr9&sid=DataCite
Dataset