Abstract
With the development of artificial intelligence (AI), the automatic analysis of video interviews to recognize individual personality traits has become an active area of research and has applications in personality computing, human-computer interaction, and psychological assessment. Advances in computer vision and pattern recognition based on deep learning (DL) techniques have led to the establishment of convolutional neural network models that can successfully recognize human nonverbal cues and attribute their personality traits with the use of a camera. In this paper, an end-to-end AI interviewing system was developed using asynchronous video interview (AVI) processing and a TensorFlow AI engine to perform automatic personality recognition (APR) based on the features extracted from the AVIs and the true personality scores from the facial expressions and self-reported questionnaires of 120 real job applicants. The experimental results show that our AI-based interview agent can successfully recognize the 'big five' traits of an interviewee at an accuracy between 90.9% and 97.4%. Our experiment also indicates that although the machine learning was conducted without large-scale data, the semisupervised DL approach performed surprisingly well with regard to APR despite the lack of labor-intensive manual annotation and labeling. The AI-based interview agent can supplement or replace existing self-reported personality assessment methods that job applicants may distort to achieve socially desirable effects.
Original language | English |
---|---|
Article number | 8660507 |
Pages (from-to) | 61018-61023 |
Number of pages | 6 |
Journal | IEEE Access |
Volume | 7 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Big five
- TensorFlow
- convolutional neural network (CNN)
- personality computing
ASJC Scopus subject areas
- General Computer Science
- General Materials Science
- General Engineering