Abstract
This study aimed to intercalate manganese (Mn) and cobalt (Co) ions in molybdenum disulfide (MoS2) to synthesize Mn-Co-MoS2 compounds using a simple one-step hydrothermal process. Surface morphologies, material properties, and electrochemical characteristics of the synthesized Mn-MoS2, Co-MoS2, and Mn-Co-MoS2 compounds were investigated. The Mn-Co-MoS2 electrode demonstrated excellent pseudocapacitive characteristics compared to the Mn-MoS2 and Co-MoS2 electrodes that had a high specific capacitance of 268.7 F/g at a current density of 1 A/g, low charge transfer resistance of 10.4 Ω, and good capacitance retention of 81.2% after 5000 charge-discharge cycles at a current density of 10 A/g. The Mn-Co-MoS2 composite and activated carbon (AC) were selected as cathode and anode electrodes for asymmetric supercapacitors, respectively. Furthermore, asymmetric Mn-Co-MoS2//AC supercapacitors achieved good cycle stability, retention performance, specific capacitance of 24.18 F/g, discharge time of 40 s, energy density of 20.51 Wh/kg, and power density of 819.71 W/kg. Additionally, the assembled asymmetric Mn-Co-MoS2//AC supercapacitors were used to test the green light emitting diode lights, which exhibited excellent charge storage capacity. The results confirmed that Mn-Co-MoS2 compounds with flower-like structures had high active sites, excellent specific capacitance, and good cycle stability and were suitable for use in energy storage devices.
Original language | English |
---|---|
Pages (from-to) | 3661-3671 |
Number of pages | 11 |
Journal | International Journal of Advanced Manufacturing Technology |
Volume | 128 |
Issue number | 7-8 |
DOIs | |
Publication status | Published - 2023 Oct |
Keywords
- Asymmetric supercapacitors
- Facile one-step hydrothermal method
- Flower-like structure
- Good cycle stability
- High active site
- Mn-Co-MoS compounds
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Mechanical Engineering
- Computer Science Applications
- Industrial and Manufacturing Engineering