Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO

Hsuan Lee, Zhen He Liao, Po Wei Hsu, Ting Chieh Hung, Yu Cheng Wu, Yuwei Lin, Jeng Han Wang, Meng Fan Luo

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The surface structures and compositions of Au-Rh bimetallic nanoclusters on an ordered thin film of Al2O3/NiAl(100) were investigated, primarily with infrared reflection absorption spectra and temperature-programmed desorption of CO as a probe molecule under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed by sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. Alloying in the clusters was active and proceeded toward a specific structure - a fcc phase, (100) orientation, and Rh core-Au shell structure, regardless of the order of metal deposition. For Au clusters incorporating deposited Rh, the Au atoms remained at the cluster surface through position exchange and became less coordinated; for deposition in reverse order, deposited Au simply decorated the surfaces of Rh clusters. Both adsorption energy and infrared absorption intensity were enhanced for CO on Au sites of the bimetallic clusters; both of them are associated with the bonding to Rh and also a decreased coordination number of CO-binding Au. These enhancements can thus serve as a fingerprint for alloying and atomic inter-diffusion in similar bimetallic systems.

Original languageEnglish
Article number044704
JournalJournal of Chemical Physics
Volume147
Issue number4
DOIs
Publication statusPublished - 2017 Jul 28

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this