Superfluid and normal-fluid density in the cuprate superconductors

D. B. Tanner, F. Gao, K. Kamarás, H. L. Liu, M. A. Quijada, D. B. Romero, Y. D. Yoon, A. Zibold, H. Berger, G. Margaritondo, L. Forró, R. J. Kelly, M. Onellion, G. Cao, J. E. Crow, O. Beom-Hoan, J. T. Markert, J. P. Rice, D. M. Ginsberg, T. Wolf

Research output: Contribution to journalArticle

Abstract

As carriers are introduced into the cuprates (by doping the insulating "parent" compounds) spectral weight appears in the optical spectrum at photon energies below the charge-transfer gap. This spectral weight increases as the doping level increases. Magnetic penetration depth measurements have shown a good correlation between superfluid density and superconducting transition temperature in the underdoped-to-optimally-doped part of the phase diagram. Optical measurements allow independent determination of the total doping-induced spectral weight and the superfluid density. These measurements, made on cuprates with transition temperatures from 40 to 110 K, find that in optimally doped materials only about 20% of the doping-induced spectral weight joins the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials, the superfluid fraction is even smaller. This result implies extremely strong coupling for these superconductors.

Original languageEnglish
Pages (from-to)175-184
Number of pages10
JournalFerroelectrics
Volume249
Issue number1-2
DOIs
Publication statusPublished - 2001 Jan

Fingerprint

cuprates
Doping (additives)
Fluids
fluids
Superconducting transition temperature
transition temperature
depth measurement
optical measurement
Superconducting materials
Phase diagrams
optical spectrum
Charge transfer
penetration
Photons
charge transfer
phase diagrams
Cuprate superconductors
photons
energy

Keywords

  • Infrared
  • Superconductivity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

Tanner, D. B., Gao, F., Kamarás, K., Liu, H. L., Quijada, M. A., Romero, D. B., ... Wolf, T. (2001). Superfluid and normal-fluid density in the cuprate superconductors. Ferroelectrics, 249(1-2), 175-184. https://doi.org/10.1080/00150190108214979

Superfluid and normal-fluid density in the cuprate superconductors. / Tanner, D. B.; Gao, F.; Kamarás, K.; Liu, H. L.; Quijada, M. A.; Romero, D. B.; Yoon, Y. D.; Zibold, A.; Berger, H.; Margaritondo, G.; Forró, L.; Kelly, R. J.; Onellion, M.; Cao, G.; Crow, J. E.; Beom-Hoan, O.; Markert, J. T.; Rice, J. P.; Ginsberg, D. M.; Wolf, T.

In: Ferroelectrics, Vol. 249, No. 1-2, 01.2001, p. 175-184.

Research output: Contribution to journalArticle

Tanner, DB, Gao, F, Kamarás, K, Liu, HL, Quijada, MA, Romero, DB, Yoon, YD, Zibold, A, Berger, H, Margaritondo, G, Forró, L, Kelly, RJ, Onellion, M, Cao, G, Crow, JE, Beom-Hoan, O, Markert, JT, Rice, JP, Ginsberg, DM & Wolf, T 2001, 'Superfluid and normal-fluid density in the cuprate superconductors', Ferroelectrics, vol. 249, no. 1-2, pp. 175-184. https://doi.org/10.1080/00150190108214979
Tanner DB, Gao F, Kamarás K, Liu HL, Quijada MA, Romero DB et al. Superfluid and normal-fluid density in the cuprate superconductors. Ferroelectrics. 2001 Jan;249(1-2):175-184. https://doi.org/10.1080/00150190108214979
Tanner, D. B. ; Gao, F. ; Kamarás, K. ; Liu, H. L. ; Quijada, M. A. ; Romero, D. B. ; Yoon, Y. D. ; Zibold, A. ; Berger, H. ; Margaritondo, G. ; Forró, L. ; Kelly, R. J. ; Onellion, M. ; Cao, G. ; Crow, J. E. ; Beom-Hoan, O. ; Markert, J. T. ; Rice, J. P. ; Ginsberg, D. M. ; Wolf, T. / Superfluid and normal-fluid density in the cuprate superconductors. In: Ferroelectrics. 2001 ; Vol. 249, No. 1-2. pp. 175-184.
@article{2cdf427d36e3466f88dbf75a11a1de6d,
title = "Superfluid and normal-fluid density in the cuprate superconductors",
abstract = "As carriers are introduced into the cuprates (by doping the insulating {"}parent{"} compounds) spectral weight appears in the optical spectrum at photon energies below the charge-transfer gap. This spectral weight increases as the doping level increases. Magnetic penetration depth measurements have shown a good correlation between superfluid density and superconducting transition temperature in the underdoped-to-optimally-doped part of the phase diagram. Optical measurements allow independent determination of the total doping-induced spectral weight and the superfluid density. These measurements, made on cuprates with transition temperatures from 40 to 110 K, find that in optimally doped materials only about 20{\%} of the doping-induced spectral weight joins the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials, the superfluid fraction is even smaller. This result implies extremely strong coupling for these superconductors.",
keywords = "Infrared, Superconductivity",
author = "Tanner, {D. B.} and F. Gao and K. Kamar{\'a}s and Liu, {H. L.} and Quijada, {M. A.} and Romero, {D. B.} and Yoon, {Y. D.} and A. Zibold and H. Berger and G. Margaritondo and L. Forr{\'o} and Kelly, {R. J.} and M. Onellion and G. Cao and Crow, {J. E.} and O. Beom-Hoan and Markert, {J. T.} and Rice, {J. P.} and Ginsberg, {D. M.} and T. Wolf",
year = "2001",
month = "1",
doi = "10.1080/00150190108214979",
language = "English",
volume = "249",
pages = "175--184",
journal = "Ferroelectrics",
issn = "0015-0193",
publisher = "Taylor and Francis Ltd.",
number = "1-2",

}

TY - JOUR

T1 - Superfluid and normal-fluid density in the cuprate superconductors

AU - Tanner, D. B.

AU - Gao, F.

AU - Kamarás, K.

AU - Liu, H. L.

AU - Quijada, M. A.

AU - Romero, D. B.

AU - Yoon, Y. D.

AU - Zibold, A.

AU - Berger, H.

AU - Margaritondo, G.

AU - Forró, L.

AU - Kelly, R. J.

AU - Onellion, M.

AU - Cao, G.

AU - Crow, J. E.

AU - Beom-Hoan, O.

AU - Markert, J. T.

AU - Rice, J. P.

AU - Ginsberg, D. M.

AU - Wolf, T.

PY - 2001/1

Y1 - 2001/1

N2 - As carriers are introduced into the cuprates (by doping the insulating "parent" compounds) spectral weight appears in the optical spectrum at photon energies below the charge-transfer gap. This spectral weight increases as the doping level increases. Magnetic penetration depth measurements have shown a good correlation between superfluid density and superconducting transition temperature in the underdoped-to-optimally-doped part of the phase diagram. Optical measurements allow independent determination of the total doping-induced spectral weight and the superfluid density. These measurements, made on cuprates with transition temperatures from 40 to 110 K, find that in optimally doped materials only about 20% of the doping-induced spectral weight joins the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials, the superfluid fraction is even smaller. This result implies extremely strong coupling for these superconductors.

AB - As carriers are introduced into the cuprates (by doping the insulating "parent" compounds) spectral weight appears in the optical spectrum at photon energies below the charge-transfer gap. This spectral weight increases as the doping level increases. Magnetic penetration depth measurements have shown a good correlation between superfluid density and superconducting transition temperature in the underdoped-to-optimally-doped part of the phase diagram. Optical measurements allow independent determination of the total doping-induced spectral weight and the superfluid density. These measurements, made on cuprates with transition temperatures from 40 to 110 K, find that in optimally doped materials only about 20% of the doping-induced spectral weight joins the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials, the superfluid fraction is even smaller. This result implies extremely strong coupling for these superconductors.

KW - Infrared

KW - Superconductivity

UR - http://www.scopus.com/inward/record.url?scp=0034818234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034818234&partnerID=8YFLogxK

U2 - 10.1080/00150190108214979

DO - 10.1080/00150190108214979

M3 - Article

AN - SCOPUS:0034818234

VL - 249

SP - 175

EP - 184

JO - Ferroelectrics

JF - Ferroelectrics

SN - 0015-0193

IS - 1-2

ER -