Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers

Jen-Je Chieh, Kai Wen Huang, Jin Cheng Shi

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T, 0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T, 0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

Original languageEnglish
Article number073703
JournalApplied Physics Letters
Volume106
Issue number7
DOIs
Publication statusPublished - 2015 Feb 16

Fingerprint

biomarkers
markers
tumors
screening
serums
magnetization
magnetometers
immunoassay
nanoparticles
proteins
antibodies
examination
cancer
interference
coatings
vibration
liquids

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers. / Chieh, Jen-Je; Huang, Kai Wen; Shi, Jin Cheng.

In: Applied Physics Letters, Vol. 106, No. 7, 073703, 16.02.2015.

Research output: Contribution to journalArticle

@article{b6f83994e50d4e049943e432f4135f09,
title = "Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers",
abstract = "Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T, 0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T, 0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.",
author = "Jen-Je Chieh and Huang, {Kai Wen} and Shi, {Jin Cheng}",
year = "2015",
month = "2",
day = "16",
doi = "10.1063/1.4909509",
language = "English",
volume = "106",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers

AU - Chieh, Jen-Je

AU - Huang, Kai Wen

AU - Shi, Jin Cheng

PY - 2015/2/16

Y1 - 2015/2/16

N2 - Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T, 0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T, 0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

AB - Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T, 0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T, 0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

UR - http://www.scopus.com/inward/record.url?scp=84923328265&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84923328265&partnerID=8YFLogxK

U2 - 10.1063/1.4909509

DO - 10.1063/1.4909509

M3 - Article

AN - SCOPUS:84923328265

VL - 106

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 7

M1 - 073703

ER -