Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance

Kuen Lin Chen, Yao Wei Yeh, Shu Hsien Liao, Chiu Hsien Wu, Li Min Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

To improve the image contrast, the so-called contrast agents (CAs) are often used in magnetic resonance image (MRI). CAs are generally paramagnetic or superparamagnetic nanoparticle suspensions. To increase the applicability of low field nuclear magnetic resonance (LFNMR) or LFMRI system, CAs also have been introduced to enhance the image contrast. In this work, we synthesized the γ-Fe2O3/Au core/shell (γ-Fe2O3@Au) nanoparticle and applied it to a homemade high-Tc SQUID-based LFNMR system to study the characteristics of γ-Fe2O3@Au nanoparticle as the contrast agent for the LFNMR system. The average hydrodynamic sizes of the synthesized γ-Fe2O3@Au nanoparticles are 28.38 ± 6.26 nm in diameter. The γ-Fe2O3@Au nanoparticles exhibit a characteristic absorption peak at 536 nm from the contribution of localized surface plasmon resonance of Au shell. The spin-lattice relaxation rate, 1/T1, and the spin-spin relaxation rate, 1/T2, varied with the concentration of γ-Fe2O3@Au nanoparticle. Compared with the data measured in high field (7 Tesla), we found that the γ-Fe2O3@Au nanoparticle is a promising T1-relaxing CA for LFNMR.

Original languageEnglish
Title of host publication16th International Conference on Nanotechnology - IEEE NANO 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages585-586
Number of pages2
ISBN (Electronic)9781509039142
DOIs
Publication statusPublished - 2016 Nov 21
Event16th IEEE International Conference on Nanotechnology - IEEE NANO 2016 - Sendai, Japan
Duration: 2016 Aug 222016 Aug 25

Publication series

Name16th International Conference on Nanotechnology - IEEE NANO 2016

Conference

Conference16th IEEE International Conference on Nanotechnology - IEEE NANO 2016
Country/TerritoryJapan
CitySendai
Period2016/08/222016/08/25

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance'. Together they form a unique fingerprint.

Cite this