Some results on finite drinfeld modules

Chih Nung Hsu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.

Original languageEnglish
Pages (from-to)1955-1961
Number of pages7
JournalProceedings of the American Mathematical Society
Issue number7
Publication statusPublished - 1998


  • Drinfeld modules
  • Hubert class field

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics


Dive into the research topics of 'Some results on finite drinfeld modules'. Together they form a unique fingerprint.

Cite this