Abstract
Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.
Original language | English |
---|---|
Pages (from-to) | 1955-1961 |
Number of pages | 7 |
Journal | Proceedings of the American Mathematical Society |
Volume | 126 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1998 |
Keywords
- Drinfeld modules
- Hubert class field
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics