### Abstract

Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/β^{N}). In particular, if K = F_{q}(t), q is an odd prime number and Ψ is the Carlitz F_{q}[t]-module, then the finite F_{q}[t]-module Ψ(F_{q}[t]/β^{N}) is always cyclic.

Original language | English |
---|---|

Pages (from-to) | 1955-1961 |

Number of pages | 7 |

Journal | Proceedings of the American Mathematical Society |

Volume | 126 |

Issue number | 7 |

Publication status | Published - 1998 Dec 1 |

### Keywords

- Drinfeld modules
- Hubert class field

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

## Fingerprint Dive into the research topics of 'Some results on finite drinfeld modules'. Together they form a unique fingerprint.

## Cite this

Hsu, C-N. (1998). Some results on finite drinfeld modules.

*Proceedings of the American Mathematical Society*,*126*(7), 1955-1961.