Some results on finite drinfeld modules

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.

Original languageEnglish
Pages (from-to)1955-1961
Number of pages7
JournalProceedings of the American Mathematical Society
Volume126
Issue number7
Publication statusPublished - 1998 Dec 1

Fingerprint

Drinfeld Modules
Module
Dedekind Domain
Integral Closure
Odd number
Prime Ideal
Function Fields
Prime number
Divisor

Keywords

  • Drinfeld modules
  • Hubert class field

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Some results on finite drinfeld modules. / Hsu, Chih-Nung.

In: Proceedings of the American Mathematical Society, Vol. 126, No. 7, 01.12.1998, p. 1955-1961.

Research output: Contribution to journalArticle

@article{4ac32ff2911647e499f4c3143af4a5cb,
title = "Some results on finite drinfeld modules",
abstract = "Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.",
keywords = "Drinfeld modules, Hubert class field",
author = "Chih-Nung Hsu",
year = "1998",
month = "12",
day = "1",
language = "English",
volume = "126",
pages = "1955--1961",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "7",

}

TY - JOUR

T1 - Some results on finite drinfeld modules

AU - Hsu, Chih-Nung

PY - 1998/12/1

Y1 - 1998/12/1

N2 - Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.

AB - Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.

KW - Drinfeld modules

KW - Hubert class field

UR - http://www.scopus.com/inward/record.url?scp=22044452144&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22044452144&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:22044452144

VL - 126

SP - 1955

EP - 1961

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 7

ER -