Solution-Processed Molybdenum Trioxide as Hole Selective Contact for Crystalline Silicon Solar Cells

Ling Yu Wang, Ting Yun Yang, Chien Chi Huang, Yu Chiang Chao, Hsin Fei Meng, Peichen Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

High-efficiency silicon solar cells requires an effective carrier selective contact. Over the past few years, molybdenum trioxide (MoO3) has been widely used as the hole selective contact (HSC) for silicon heterojunction solar cells. The high work function and wide energy gap lead to favorable band bending for hole transport across the MoO3/Si interface. In previous studies, the MoO3 is commonly deposited by thermal evaporation. Here, we propose a simple solution-processed method to form a MoO3 HSC for conventional crystalline silicon (c-Si) solar cells. The crystalline MoO3 nanoparticle solution with a concentration of 2.3-2.7wt% was blade coated on the rear side of an n+/p silicon solar cell without an antireflective coating. By measuring the current-voltage (I-V), contact resistivity (ρc), and external quantum efficiency (EQE), we investigate the photoelectric properties of the solar cells incorporating the MoO3 nanoparticle layer. We show that the MoO3 HSC has a low contact resistivity of 29.5 mΩ cm between p-type Si and the silver electrode. The EQE exhibits enahcement on the near-infrared wavelength regime, indicating a field passivation effect. Overall, the n+/p c-Si solar cell incorporating the solution-processed MoO3 HSC exhibits an improved power conversion efficiency (PCE) of 11.8% due to an increased open-circuit voltage (Voc) and fill factor (FF).

Original languageEnglish
Title of host publication2021 IEEE 48th Photovoltaic Specialists Conference, PVSC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1062-1064
Number of pages3
ISBN (Electronic)9781665419222
DOIs
Publication statusPublished - 2021 Jun 20
Event48th IEEE Photovoltaic Specialists Conference, PVSC 2021 - Fort Lauderdale, United States
Duration: 2021 Jun 202021 Jun 25

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371

Conference

Conference48th IEEE Photovoltaic Specialists Conference, PVSC 2021
Country/TerritoryUnited States
CityFort Lauderdale
Period2021/06/202021/06/25

Keywords

  • hole selective contacts
  • molybdenum trioxide
  • silicon photovoltaics
  • solution process

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Solution-Processed Molybdenum Trioxide as Hole Selective Contact for Crystalline Silicon Solar Cells'. Together they form a unique fingerprint.

Cite this