TY - JOUR
T1 - Simultaneously preperiodic points for families of polynomials in normal form
AU - Ghioca, Dragos
AU - Hsia, Liang Chung
AU - Nguyen, Khoa Dang
N1 - Publisher Copyright:
© 2017 American Mathematical Society.
PY - 2017
Y1 - 2017
N2 - Let d > m > 1 be integers, let c1, …, cm+1 be distinct complex numbers, and let f(z):= zd + t1 zm−1 + t2 zm−2 + · · · + tm−1 z + tm be an m-parameter family of polynomials. We prove that the set of m-tuples of parameters (t1, …, tm) ∈ Cm with the property that each ci (for i = 1, …, m+1) is preperiodic under the action of the corresponding polynomial f(z) is contained in finitely many hypersurfaces of the parameter space Am.
AB - Let d > m > 1 be integers, let c1, …, cm+1 be distinct complex numbers, and let f(z):= zd + t1 zm−1 + t2 zm−2 + · · · + tm−1 z + tm be an m-parameter family of polynomials. We prove that the set of m-tuples of parameters (t1, …, tm) ∈ Cm with the property that each ci (for i = 1, …, m+1) is preperiodic under the action of the corresponding polynomial f(z) is contained in finitely many hypersurfaces of the parameter space Am.
UR - http://www.scopus.com/inward/record.url?scp=85037598492&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037598492&partnerID=8YFLogxK
U2 - 10.1090/proc/13762
DO - 10.1090/proc/13762
M3 - Article
AN - SCOPUS:85037598492
SN - 0002-9939
VL - 146
SP - 733
EP - 741
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 2
ER -