Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models

Chiung Mei Chen, Wan Ling Chen, Chen Ting Hung, Te Hsien Lin, Ming Chung Lee, I. Cheng Chen, Chih Hsin Lin, Chih Ying Chao, Yih Ru Wu, Kuo Hsuan Chang, Hsiu Mei Hsieh-Li, Guey Jen Lee-Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Spinocerebellar ataxia (SCA) type 17 is an autosomal dominant ataxia caused by expanded polyglutamine (polyQ) tract in the TATA-box binding protein (TBP). Substantial studies have shown involvement of compromised mitochondria biogenesis regulator peroxisome proliferator-activated receptor gamma-coactivator 1 alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor-Y subunit A (NFYA), and their downstream target genes in the pathogenesis of polyQ-expansion diseases. The extracts of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza uralensis (G. uralensis) have long been used as a Chinese herbal medicine (CHM). Shaoyao Gancao Tang (SG-Tang) is a formulated CHM made of P. lactiflora and G. uralensis at a 1:1 ratio. In the present study, we demonstrated the aggregate-inhibitory and anti-oxidative effect of SG-Tang in 293 TBP/Q 79 cells. We then showed that SG-Tang reduced the aggregates and ameliorated the neurite outgrowth deficits in TBP/Q 79 SH-SY5Y cells. SG-Tang upregulated expression levels of NFYA, PGC-1α, NRF2, and their downstream target genes in TBP/Q 79 SH-SY5Y cells. Knock down of NFYA, PGC-1α, and NRF2 attenuated the neurite outgrowth promoting effect of SG-Tang on TBP/Q 79 SH-SY5Y cells. Furthermore, SG-Tang inhibited aggregation and rescued motor-deficits in SCA17 mouse model. The study results suggest the potential of SG-Tang in treating SCA17 and probable other polyQ diseases.

Original languageEnglish
Pages (from-to)986-1007
Number of pages22
JournalAging
Volume11
Issue number3
DOIs
Publication statusPublished - 2019

Keywords

  • NFYA
  • NRF2
  • Oxidative stress
  • PGC-1α
  • PolyQ aggregates
  • Shaoyao Gancao Tang
  • Spinocerebellar ataxia 17/TBP

ASJC Scopus subject areas

  • Ageing
  • Cell Biology

Fingerprint

Dive into the research topics of 'Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models'. Together they form a unique fingerprint.

Cite this