Abstract
This article aims to present a novel sensor-based continuous hand gesture recognition algorithm by long short-term memory (LSTM). Only the basic accelerators and/or gyroscopes are required by the algorithm. Given a sequence of input sensory data, a many-to-many LSTM scheme is adopted to produce an output path. A maximum a posteriori estimation is then carried out based on the observed path to obtain the final classification results. A prototype system based on smartphones has been implemented for the performance evaluation. Experimental results show that the proposed algorithm is an effective alternative for robust and accurate hand-gesture recognition.
Original language | English |
---|---|
Article number | 6000704 |
Journal | IEEE Sensors Letters |
Volume | 2 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2018 Sept |
Keywords
- Sensor applications
- continuous hand gesture recognition
- human machine interface
- long short-term memory (LSTM)
ASJC Scopus subject areas
- Instrumentation
- Electrical and Electronic Engineering