Abstract
A nuclear magnetic resonance and imaging system was constructed to study spin-lattice relaxation time T1, spin-spin relaxation time T 2, and effective relaxation time T2 of gadolinium (Gd) chelates using a high- Tc superconducting quantum interference device in microtesla magnetic fields. In the presence of the magnetic contrast T2 is related to T2 by the relation: 1/ T2 =1/ T2 +γΔB+ Gd-chelates, where γ=42.58 kHz/mT and γΔB is the relaxation rate due to the inhomogeneity field ΔB in measuring coil at the sample position and Gd-chelates is the intrinsic relaxation rate of Gd chelates. It is found that T1, T2, and 1/ Gd-chelates decay exponentially as the concentration (or magnetic susceptibility) of Gd chelates increases. The Gd chelates cause a diffusive motion of nuclear spins and hence enhance the relaxation rates. Enhanced image contrast has been demonstrated in a water phantom with Gd chelates in microtesla magnetic fields.
Original language | English |
---|---|
Article number | 093904 |
Journal | Journal of Applied Physics |
Volume | 108 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2010 Nov 1 |
ASJC Scopus subject areas
- General Physics and Astronomy