Relaxation rates of protons in gadolinium chelates detected with a high-Tc superconducting quantum interference device in microtesla magnetic fields

Hsin Hsien Chen*, Hong Chang Yang, Herng Er Horng, Jong Kai Hsiao, Shieh Yueh Yang, Shu Hsien Liao, Ming Jye Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

A nuclear magnetic resonance and imaging system was constructed to study spin-lattice relaxation time T1, spin-spin relaxation time T 2, and effective relaxation time T2 of gadolinium (Gd) chelates using a high- Tc superconducting quantum interference device in microtesla magnetic fields. In the presence of the magnetic contrast T2 is related to T2 by the relation: 1/ T2 =1/ T2 +γΔB+ Gd-chelates, where γ=42.58 kHz/mT and γΔB is the relaxation rate due to the inhomogeneity field ΔB in measuring coil at the sample position and Gd-chelates is the intrinsic relaxation rate of Gd chelates. It is found that T1, T2, and 1/ Gd-chelates decay exponentially as the concentration (or magnetic susceptibility) of Gd chelates increases. The Gd chelates cause a diffusive motion of nuclear spins and hence enhance the relaxation rates. Enhanced image contrast has been demonstrated in a water phantom with Gd chelates in microtesla magnetic fields.

Original languageEnglish
Article number093904
JournalJournal of Applied Physics
Volume108
Issue number9
DOIs
Publication statusPublished - 2010 Nov 1
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Relaxation rates of protons in gadolinium chelates detected with a high-T<sub>c</sub> superconducting quantum interference device in microtesla magnetic fields'. Together they form a unique fingerprint.

Cite this