TY - JOUR
T1 - Regional homogeneity correlates with mathematical and scientific talent and intelligence quotient
AU - Wu, Ching Lin
AU - Kuo, Ching Chih
N1 - Publisher Copyright:
© 2020, National Taiwan Normal University. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Mathematical and scientific talented (MST) students are often to thought to those who have high intelligence (IQ). Recently, many studies evaluating the neurological mechanism underlying mathematical and scientific talent indicate that certain talents are associated with different brain structures. Furthermore, white matter microstructure is connected differently in cases of mathematical and scientific talent and intelligence. However, research evaluating the relationship between MST, IQ, and gray matter microstructure using the method of regional homogeneity is rare. To address this issue, sixteen MST individuals with average age 20.91 (SD = 1.75) and 14 typically developed undergraduate with average age 21.72 (SD = 0.92) were recruited to participate this research. Participants were recruited from the Departments of Science, Electrical and Computer Engineering, Computer Science, Medicine, and Life Science and the Department of Bio-resources and Agriculture of Taiwanese universities. The participants were assessed intelligence using the Wechsler Adult Intelligence Scale-III and a resting-state brain approach. The present study was reviewed and approved by the Research Ethics Center of Taipei Medical University of Taiwan. All the participants signed an informed consent before the experiment began. The results demonstrated that for both the MST and control groups, intelligence and regional homogeneity were positively correlated with the middle frontal gyrus, anterior cingulate, and thalamus. After controlling for the influence of age and IQ, the local efficiencies of the frontal, parietal and temporal lobes, cingulate cortex, insula, and thalamus were higher in the MST group than those in the control group. These results are consistent with portions of the parieto-frontal integration theory that postulate that math-and science and intelligence work together in some brain regions, but operate independently in others. The findings of the present study contribute to a further understanding of the different traits between high IQ and math-and science as well as way to identify different kinds of talents.
AB - Mathematical and scientific talented (MST) students are often to thought to those who have high intelligence (IQ). Recently, many studies evaluating the neurological mechanism underlying mathematical and scientific talent indicate that certain talents are associated with different brain structures. Furthermore, white matter microstructure is connected differently in cases of mathematical and scientific talent and intelligence. However, research evaluating the relationship between MST, IQ, and gray matter microstructure using the method of regional homogeneity is rare. To address this issue, sixteen MST individuals with average age 20.91 (SD = 1.75) and 14 typically developed undergraduate with average age 21.72 (SD = 0.92) were recruited to participate this research. Participants were recruited from the Departments of Science, Electrical and Computer Engineering, Computer Science, Medicine, and Life Science and the Department of Bio-resources and Agriculture of Taiwanese universities. The participants were assessed intelligence using the Wechsler Adult Intelligence Scale-III and a resting-state brain approach. The present study was reviewed and approved by the Research Ethics Center of Taipei Medical University of Taiwan. All the participants signed an informed consent before the experiment began. The results demonstrated that for both the MST and control groups, intelligence and regional homogeneity were positively correlated with the middle frontal gyrus, anterior cingulate, and thalamus. After controlling for the influence of age and IQ, the local efficiencies of the frontal, parietal and temporal lobes, cingulate cortex, insula, and thalamus were higher in the MST group than those in the control group. These results are consistent with portions of the parieto-frontal integration theory that postulate that math-and science and intelligence work together in some brain regions, but operate independently in others. The findings of the present study contribute to a further understanding of the different traits between high IQ and math-and science as well as way to identify different kinds of talents.
KW - Intelligence
KW - Mathematical and scientific talent
KW - Regional homogeneity
KW - Resting-state
UR - http://www.scopus.com/inward/record.url?scp=85107313633&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107313633&partnerID=8YFLogxK
U2 - 10.6251/BEP.202003_51(3).0005
DO - 10.6251/BEP.202003_51(3).0005
M3 - Article
AN - SCOPUS:85107313633
SN - 1011-5714
VL - 51
SP - 443
EP - 457
JO - Bulletin of Educational Psychology
JF - Bulletin of Educational Psychology
IS - 3
ER -