Abstract
We investigated the magnetic anisotropy energy of monatomic surface-step atoms in antiferromagnetic/ferromagnetic (AF/FM) epitaxial Mn/Co bilayers grown on vicinal Cu(001) surfaces. The step-induced anisotropy of the Co/Cu(001) films was quenched upon submonolayer Mn deposition, but a reentrant uniaxial surface anisotropy was observed for Mn thickness (tMn) between 1 and 2 monolayers, which disappears for Mn thickness above 2 monolayers. In the Mn/Co/Cu(001) system, Mn films undergo a tMn-dependent transition from FM to AF in the 1-2 Mn monolayer thickness range, which entails the coexistence of FM and AF Mn phases in the film. The observation of a sizeable uniaxial anisotropy exclusively in the Mn-thickness range of coexistence of the FM and AF phases points out the crucial role of the boundaries between FM and AF regions within the Mn film. A symmetry-breaking mechanism of a magnetic type, rather than a purely geometric one, is therefore proposed as the origin of the reentrant anisotropy.
Original language | English |
---|---|
Article number | 037201 |
Journal | Physical Review Letters |
Volume | 112 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 Jan 23 |
Keywords
- 75.25.-j
- 75.30.Gw
- 75.50.Ee
- 75.70.-i
ASJC Scopus subject areas
- General Physics and Astronomy