TY - JOUR
T1 - Record of short-lived “orogen” on Eurasian continental margin by South China Sea obduction preserved in Taiwan collision
AU - Lo, Yun Chieh
AU - Chen, Chih Tung
AU - Lo, Ching Hua
AU - Chung, Sun Lin
AU - Yeh, Meng Wan
N1 - Publisher Copyright:
Copyright © 2023 Lo, Chen, Lo, Chung and Yeh.
PY - 2023
Y1 - 2023
N2 - The Taiwan mountain belt is the result of an arc-continent collision following the total subduction of the South China Sea and subsequent closure of the Luzon forearc, a process important in the accretionary growth of continents. Due to the oblique convergence, the southern tip of Taiwan Island is experiencing incipient collision, which is key to observing the oceanic-continental subduction transition. Within the monotonous turbidite extensively exposed on the Hengchun Peninsula as an uplifted Manila Trench accretionary wedge, the Shihmen Conglomerate, as a few intercalated lenses of coarse mafic pebbles, represents a dramatic change in sediment provenance and the causal tectonic event. New zircon U-Pb and amphibole 40Ar/39Ar ages are obtained from sediments, including sands and mafic pebbles that are either gabbro or foliated amphibolite. The 22–24 Ma zircon crystallization ages confirm the South China Sea origin of the mafic clasts, while the much younger 13 ± 2 Ma amphibole 40Ar/39Ar isochron ages from foliated amphibolites suggest a later thermal-tectonic event other than seafloor metamorphism. The amphibole 40Ar/39Ar ages overlap with the biostratigraphic age (∼11–14 Ma), indicating that the mafic source rocks were exhumed and eroded in a high-relief topography immediately after metamorphism. Detrital zircon U-Pb ages from a sandy layer within the conglomerate are also mostly identical to those from the mafic pebbles. Since the paleocurrent of the Shihmen Conglomerate was similar to that of the neighboring turbidites, which were derived from major rivers draining the southeastern Chinese continent, the provenance of the mafic pebbles and sands was best explained as an isolated subaerial mountain on the Eurasian continental margin with a very limited temporal and spatial extent, as the detrital products are poorly distributed. The most likely cause of the ephemeral mountain was the obduction of the South China Sea onto the Eurasian continental margin when the latter first impinged on the Philippine Sea Plate at the Manila Trench, where the gabbroic oceanic crust was uplifted and exhumed, followed by dynamic metamorphism along the basal thrust.
AB - The Taiwan mountain belt is the result of an arc-continent collision following the total subduction of the South China Sea and subsequent closure of the Luzon forearc, a process important in the accretionary growth of continents. Due to the oblique convergence, the southern tip of Taiwan Island is experiencing incipient collision, which is key to observing the oceanic-continental subduction transition. Within the monotonous turbidite extensively exposed on the Hengchun Peninsula as an uplifted Manila Trench accretionary wedge, the Shihmen Conglomerate, as a few intercalated lenses of coarse mafic pebbles, represents a dramatic change in sediment provenance and the causal tectonic event. New zircon U-Pb and amphibole 40Ar/39Ar ages are obtained from sediments, including sands and mafic pebbles that are either gabbro or foliated amphibolite. The 22–24 Ma zircon crystallization ages confirm the South China Sea origin of the mafic clasts, while the much younger 13 ± 2 Ma amphibole 40Ar/39Ar isochron ages from foliated amphibolites suggest a later thermal-tectonic event other than seafloor metamorphism. The amphibole 40Ar/39Ar ages overlap with the biostratigraphic age (∼11–14 Ma), indicating that the mafic source rocks were exhumed and eroded in a high-relief topography immediately after metamorphism. Detrital zircon U-Pb ages from a sandy layer within the conglomerate are also mostly identical to those from the mafic pebbles. Since the paleocurrent of the Shihmen Conglomerate was similar to that of the neighboring turbidites, which were derived from major rivers draining the southeastern Chinese continent, the provenance of the mafic pebbles and sands was best explained as an isolated subaerial mountain on the Eurasian continental margin with a very limited temporal and spatial extent, as the detrital products are poorly distributed. The most likely cause of the ephemeral mountain was the obduction of the South China Sea onto the Eurasian continental margin when the latter first impinged on the Philippine Sea Plate at the Manila Trench, where the gabbroic oceanic crust was uplifted and exhumed, followed by dynamic metamorphism along the basal thrust.
KW - Ar/Ar dating
KW - Eurasian continental margin
KW - South China Sea
KW - Taiwan mountain belt
KW - ophiolite obduction
KW - zircon U-Pb dating
UR - http://www.scopus.com/inward/record.url?scp=85159896153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85159896153&partnerID=8YFLogxK
U2 - 10.3389/feart.2023.1118520
DO - 10.3389/feart.2023.1118520
M3 - Article
AN - SCOPUS:85159896153
SN - 2296-6463
VL - 11
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
M1 - 1118520
ER -