Abstract
This article reports the results of an experimental and computational study on the reaction of trimethylindium, Iri(CH 3) 3, adsorbed on TiO 2 nanoparticle films. Experimentally, Fourier transform infrared (FTIR) spectra have been measured by varying In(CH 3) 3 dosing pressure, UV irradiation time in the absence and presence of oxygen, and surface annealing temperature on both "clean" and HO-covered TiO 2 nanoparticle films. Computationally, adsorption energies, molecular structures, and vibrational frequencies of possible adsorbates have been predicted by first-principles calculations based on the density functional theory (DFT) and the pseudopotential method. Three important reactions involving CH 3 elimination, CH 4 elimination, and CH 3 migration from the adsorbed trimethylindium have been elucidated in detail. CH 3 migration is the only exothermic process with the lowest reaction barrier. On the basis of experimental and computational results, the two sharpest peaks at 2979 and 2925 cm -1 detected in the dosage and UV irradiation experiments in the absence of oxygen, are attributable to the asymmetric and symmetric C-H vibrations of methyl groups in In(CH 3) 3(a) and its derivatives, (H 3C) 2In(a), H 3CIn(a), and H 3CO(a). In the UV irradiation experiment in the presence of oxygen, the methyl groups attached to the In atom were quickly oxidized to the methoxy with the C-H vibrations at 2925 and 2822 cm -1 and to the carboxyl group with vibrations at 2888 cm -1 (v s(CH)), 1577 cm -1 (v a(OCO)), 1380 cm -1 (δ(CH)), and 1355 cm -1 (v s(OCO)). Finally, from the computed energies with vibrational analysis, the adsorbed structure of the carboxyl group was confirmed to involve two oxygen atoms doubly adsorbed on two surface Ti atoms.
Original language | English |
---|---|
Pages (from-to) | 20858-20867 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry B |
Volume | 109 |
Issue number | 44 |
DOIs | |
Publication status | Published - 2005 Nov 10 |
Externally published | Yes |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry