Reactions of trimethylindium on TiO 2 nanoparticles: Experimental and computational study

Jeng Han Wang, M. C. Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

This article reports the results of an experimental and computational study on the reaction of trimethylindium, Iri(CH 3) 3, adsorbed on TiO 2 nanoparticle films. Experimentally, Fourier transform infrared (FTIR) spectra have been measured by varying In(CH 3) 3 dosing pressure, UV irradiation time in the absence and presence of oxygen, and surface annealing temperature on both "clean" and HO-covered TiO 2 nanoparticle films. Computationally, adsorption energies, molecular structures, and vibrational frequencies of possible adsorbates have been predicted by first-principles calculations based on the density functional theory (DFT) and the pseudopotential method. Three important reactions involving CH 3 elimination, CH 4 elimination, and CH 3 migration from the adsorbed trimethylindium have been elucidated in detail. CH 3 migration is the only exothermic process with the lowest reaction barrier. On the basis of experimental and computational results, the two sharpest peaks at 2979 and 2925 cm -1 detected in the dosage and UV irradiation experiments in the absence of oxygen, are attributable to the asymmetric and symmetric C-H vibrations of methyl groups in In(CH 3) 3(a) and its derivatives, (H 3C) 2In(a), H 3CIn(a), and H 3CO(a). In the UV irradiation experiment in the presence of oxygen, the methyl groups attached to the In atom were quickly oxidized to the methoxy with the C-H vibrations at 2925 and 2822 cm -1 and to the carboxyl group with vibrations at 2888 cm -1 (v s(CH)), 1577 cm -1 (v a(OCO)), 1380 cm -1 (δ(CH)), and 1355 cm -1 (v s(OCO)). Finally, from the computed energies with vibrational analysis, the adsorbed structure of the carboxyl group was confirmed to involve two oxygen atoms doubly adsorbed on two surface Ti atoms.

Original languageEnglish
Pages (from-to)20858-20867
Number of pages10
JournalJournal of Physical Chemistry B
Volume109
Issue number44
DOIs
Publication statusPublished - 2005 Nov 10
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Reactions of trimethylindium on TiO 2 nanoparticles: Experimental and computational study'. Together they form a unique fingerprint.

Cite this