Abstract
One of the pathologic hallmarks in Alzheimer's disease (AD) is extracellular senile plaques composed of amyloid-β (Aβ) fibrils. Blocking Aβ self-assembly or disassembling Aβ aggregates by small molecules would be potential therapeutic strategies to treat AD. In this study, we synthesized a series of rationally designed divalent compounds and examined their effects on Aβ fibrillization. A divalent amide (2) derived from two molecules of caffeic acid with a propylenediamine linker of ∼5.0 Å in length, which is close to the distance of adjacent β sheets in Aβ fibrils, showed good potency to inhibit Aβ(1–42) fibrillization. Furthermore, compound 2 effectively dissociated the Aβ(1–42) preformed fibrils. The cytotoxicity induced by Aβ(1–42) aggregates in human neuroblastoma was reduced in the presence of 2, and feeding 2 to Aβ transgenic C. elegans rescued the paralysis phenotype. In addition, the binding and stoichiometry of 2 to Aβ(1–40) were demonstrated by using electrospray ionization−traveling wave ion mobility−mass spectrometry, while molecular dynamic simulation was conducted to gain structural insights into the Aβ(1–40)−2 complex.
Original language | English |
---|---|
Pages (from-to) | 393-404 |
Number of pages | 12 |
Journal | European Journal of Medicinal Chemistry |
Volume | 158 |
DOIs | |
Publication status | Published - 2018 Oct 5 |
Keywords
- Alzheimer's disease
- Amyloid-β
- Caffeic acid
- Cytotoxicity
- Divalent caffeic amide
- Inhibitor
ASJC Scopus subject areas
- Pharmacology
- Drug Discovery
- Organic Chemistry