Abstract
The aim of this study was to analyze public opinion about online learning during the COVID-19 (Coronavirus Disease 2019) pandemic. A total of 154 articles from online news and blogging websites related to online learning were extracted from Google and DuckDuckGo. The articles were extracted for 45 days, starting from the day the World Health Organization (WHO) declared COVID-19 a worldwide pandemic, 11 March 2020. For this research, we applied the dictionary-based approach of the lexicon-based method to perform sentiment analysis on the articles extracted through web scraping. We calculated the polarity and subjectivity scores of the extracted article using the TextBlob library. The results showed that over 90% of the articles are positive, and the remaining were mildly negative. In general, the blogs were more positive than the newspaper articles; however, the blogs were more opinionated compared to the news articles.
Original language | English |
---|---|
Article number | 3346 |
Journal | Sustainability (Switzerland) |
Volume | 13 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2021 Mar 2 |
Keywords
- COVID-19 pandemic
- Online learning
- Sentiment analysis
- Web scraping
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Environmental Science (miscellaneous)
- Geography, Planning and Development
- Energy Engineering and Power Technology
- Hardware and Architecture
- Management, Monitoring, Policy and Law
- Computer Networks and Communications
- Renewable Energy, Sustainability and the Environment