Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Background/Aims: Lipopolysaccharides (LPS) binding to Toll-like receptor 4 (TLR4) activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA) with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF). Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose)-polymerase (PARP)-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

Original languageEnglish
Pages (from-to)267-277
Number of pages11
JournalKidney and Blood Pressure Research
Volume41
Issue number3
DOIs
Publication statusPublished - 2016 Jun 1

Fingerprint

Toll-Like Receptor 4
N-Acetylneuraminic Acid
Acute Kidney Injury
Lipopolysaccharides
Kidney
Reactive Oxygen Species
Poly(ADP-ribose) Polymerases
NADPH Oxidase
Apoptosis
Caspase 3
Hemodynamics
Blood Urea Nitrogen
Urethane
Microcirculation
Wistar Rats
Monocytes
Creatinine
Arterial Pressure
Macrophages
Inflammation

Keywords

  • Apoptosis
  • Gp91
  • Lipopolysaccharide
  • Reactive oxygen species
  • Sialic acid
  • Toll-like receptors

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Nephrology

Cite this

@article{fff706ce496e4776af77d7e037b5910d,
title = "Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling",
abstract = "Background/Aims: Lipopolysaccharides (LPS) binding to Toll-like receptor 4 (TLR4) activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA) with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF). Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose)-polymerase (PARP)-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.",
keywords = "Apoptosis, Gp91, Lipopolysaccharide, Reactive oxygen species, Sialic acid, Toll-like receptors",
author = "Hsu, {Shih Ping} and Chen, {Chin Chih} and Chien, {Chiang Ting}",
year = "2016",
month = "6",
day = "1",
doi = "10.1159/000443430",
language = "English",
volume = "41",
pages = "267--277",
journal = "Kidney and Blood Pressure Research",
issn = "1420-4096",
publisher = "S. Karger AG",
number = "3",

}

TY - JOUR

T1 - Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

AU - Hsu, Shih Ping

AU - Chen, Chin Chih

AU - Chien, Chiang Ting

PY - 2016/6/1

Y1 - 2016/6/1

N2 - Background/Aims: Lipopolysaccharides (LPS) binding to Toll-like receptor 4 (TLR4) activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA) with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF). Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose)-polymerase (PARP)-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

AB - Background/Aims: Lipopolysaccharides (LPS) binding to Toll-like receptor 4 (TLR4) activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA) with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF). Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose)-polymerase (PARP)-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

KW - Apoptosis

KW - Gp91

KW - Lipopolysaccharide

KW - Reactive oxygen species

KW - Sialic acid

KW - Toll-like receptors

UR - http://www.scopus.com/inward/record.url?scp=84966339651&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966339651&partnerID=8YFLogxK

U2 - 10.1159/000443430

DO - 10.1159/000443430

M3 - Article

C2 - 27160740

AN - SCOPUS:84966339651

VL - 41

SP - 267

EP - 277

JO - Kidney and Blood Pressure Research

JF - Kidney and Blood Pressure Research

SN - 1420-4096

IS - 3

ER -