Preperiodic points for families of polynomials

Dragos Ghioca, Liang Chung Hsia, Thomas J. Tucker

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Let a(λ), b(λ) j{cyrillic, ukrainian} C[λ], and let fλ(x) j{cyrillic, ukrainian} C[x] be a one-parameter family of polynomials indexed by all λ j{cyrillic, ukrainian} C. We study whether there exist infinitely many λ j{cyrillic, ukrainian} C such that both a(λ) and b(λ) are preperiodic for fλ.

Original languageEnglish
Pages (from-to)701-732
Number of pages32
JournalAlgebra and Number Theory
Volume7
Issue number3
DOIs
Publication statusPublished - 2013 Sep 9

Fingerprint

Polynomial
Family

Keywords

  • Heights
  • Preperiodic points

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Preperiodic points for families of polynomials. / Ghioca, Dragos; Hsia, Liang Chung; Tucker, Thomas J.

In: Algebra and Number Theory, Vol. 7, No. 3, 09.09.2013, p. 701-732.

Research output: Contribution to journalArticle

Ghioca, Dragos ; Hsia, Liang Chung ; Tucker, Thomas J. / Preperiodic points for families of polynomials. In: Algebra and Number Theory. 2013 ; Vol. 7, No. 3. pp. 701-732.
@article{b4a235340e604e909e2618789a0e5b17,
title = "Preperiodic points for families of polynomials",
abstract = "Let a(λ), b(λ) j{cyrillic, ukrainian} C[λ], and let fλ(x) j{cyrillic, ukrainian} C[x] be a one-parameter family of polynomials indexed by all λ j{cyrillic, ukrainian} C. We study whether there exist infinitely many λ j{cyrillic, ukrainian} C such that both a(λ) and b(λ) are preperiodic for fλ.",
keywords = "Heights, Preperiodic points",
author = "Dragos Ghioca and Hsia, {Liang Chung} and Tucker, {Thomas J.}",
year = "2013",
month = "9",
day = "9",
doi = "10.2140/ant.2013.7.701",
language = "English",
volume = "7",
pages = "701--732",
journal = "Algebra and Number Theory",
issn = "1937-0652",
publisher = "Mathematical Sciences Publishers",
number = "3",

}

TY - JOUR

T1 - Preperiodic points for families of polynomials

AU - Ghioca, Dragos

AU - Hsia, Liang Chung

AU - Tucker, Thomas J.

PY - 2013/9/9

Y1 - 2013/9/9

N2 - Let a(λ), b(λ) j{cyrillic, ukrainian} C[λ], and let fλ(x) j{cyrillic, ukrainian} C[x] be a one-parameter family of polynomials indexed by all λ j{cyrillic, ukrainian} C. We study whether there exist infinitely many λ j{cyrillic, ukrainian} C such that both a(λ) and b(λ) are preperiodic for fλ.

AB - Let a(λ), b(λ) j{cyrillic, ukrainian} C[λ], and let fλ(x) j{cyrillic, ukrainian} C[x] be a one-parameter family of polynomials indexed by all λ j{cyrillic, ukrainian} C. We study whether there exist infinitely many λ j{cyrillic, ukrainian} C such that both a(λ) and b(λ) are preperiodic for fλ.

KW - Heights

KW - Preperiodic points

UR - http://www.scopus.com/inward/record.url?scp=84883346552&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883346552&partnerID=8YFLogxK

U2 - 10.2140/ant.2013.7.701

DO - 10.2140/ant.2013.7.701

M3 - Article

AN - SCOPUS:84883346552

VL - 7

SP - 701

EP - 732

JO - Algebra and Number Theory

JF - Algebra and Number Theory

SN - 1937-0652

IS - 3

ER -