Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs

Min-Hung Lee, S. T. Fan, C. H. Tang, P. G. Chen, Y. C. Chou, H. H. Chen, J. Y. Kuo, M. J. Xie, S. N. Liu, M. H. Liao, C. A. Jong, K. S. Li, M. C. Chen, C. W. Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

37 Citations (Scopus)

Abstract

Ferroelectric HfZrOx (FE-HZO) negative capacitance (NC) FETs is experimentally demonstrated with physical thickness 1.5 nm, SS = 52 mV/dec, hysteresis free (threshold voltage shift = 0.8 mV), and 0.65 nm CET (capacitance equivalent thickness). The NC-FinFET modeling is validated on standard 14nm FinFET. The transient behavior of gate and drain current response are exhibited with triangular gate voltage sweep. The dynamic NC model with compact equivalent circuit for ultra-thin FE-HZO is established with experimental data validation, and estimates the fast response. A feasible concept of coupling the ultra-thin FE-HZO (1.x nm) with NC as gate stack paves a promising solution for sub-10nm technology node.

Original languageEnglish
Title of host publication2016 IEEE International Electron Devices Meeting, IEDM 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12.1.1-12.1.4
ISBN (Electronic)9781509039012
DOIs
Publication statusPublished - 2017 Jan 31
Event62nd IEEE International Electron Devices Meeting, IEDM 2016 - San Francisco, United States
Duration: 2016 Dec 32016 Dec 7

Publication series

NameTechnical Digest - International Electron Devices Meeting, IEDM
ISSN (Print)0163-1918

Other

Other62nd IEEE International Electron Devices Meeting, IEDM 2016
CountryUnited States
CitySan Francisco
Period16/12/316/12/7

Fingerprint

Field effect transistors
Ferroelectric materials
Capacitance
field effect transistors
capacitance
Drain current
Threshold voltage
equivalent circuits
Equivalent circuits
threshold voltage
Hysteresis
hysteresis
shift
Electric potential
electric potential
estimates
FinFET

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Cite this

Lee, M-H., Fan, S. T., Tang, C. H., Chen, P. G., Chou, Y. C., Chen, H. H., ... Liu, C. W. (2017). Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In 2016 IEEE International Electron Devices Meeting, IEDM 2016 (pp. 12.1.1-12.1.4). [7838400] (Technical Digest - International Electron Devices Meeting, IEDM). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IEDM.2016.7838400

Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. / Lee, Min-Hung; Fan, S. T.; Tang, C. H.; Chen, P. G.; Chou, Y. C.; Chen, H. H.; Kuo, J. Y.; Xie, M. J.; Liu, S. N.; Liao, M. H.; Jong, C. A.; Li, K. S.; Chen, M. C.; Liu, C. W.

2016 IEEE International Electron Devices Meeting, IEDM 2016. Institute of Electrical and Electronics Engineers Inc., 2017. p. 12.1.1-12.1.4 7838400 (Technical Digest - International Electron Devices Meeting, IEDM).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Lee, M-H, Fan, ST, Tang, CH, Chen, PG, Chou, YC, Chen, HH, Kuo, JY, Xie, MJ, Liu, SN, Liao, MH, Jong, CA, Li, KS, Chen, MC & Liu, CW 2017, Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. in 2016 IEEE International Electron Devices Meeting, IEDM 2016., 7838400, Technical Digest - International Electron Devices Meeting, IEDM, Institute of Electrical and Electronics Engineers Inc., pp. 12.1.1-12.1.4, 62nd IEEE International Electron Devices Meeting, IEDM 2016, San Francisco, United States, 16/12/3. https://doi.org/10.1109/IEDM.2016.7838400
Lee M-H, Fan ST, Tang CH, Chen PG, Chou YC, Chen HH et al. Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. In 2016 IEEE International Electron Devices Meeting, IEDM 2016. Institute of Electrical and Electronics Engineers Inc. 2017. p. 12.1.1-12.1.4. 7838400. (Technical Digest - International Electron Devices Meeting, IEDM). https://doi.org/10.1109/IEDM.2016.7838400
Lee, Min-Hung ; Fan, S. T. ; Tang, C. H. ; Chen, P. G. ; Chou, Y. C. ; Chen, H. H. ; Kuo, J. Y. ; Xie, M. J. ; Liu, S. N. ; Liao, M. H. ; Jong, C. A. ; Li, K. S. ; Chen, M. C. ; Liu, C. W. / Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs. 2016 IEEE International Electron Devices Meeting, IEDM 2016. Institute of Electrical and Electronics Engineers Inc., 2017. pp. 12.1.1-12.1.4 (Technical Digest - International Electron Devices Meeting, IEDM).
@inproceedings{1cddd4f4940440dab597133ce8a77e99,
title = "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs",
abstract = "Ferroelectric HfZrOx (FE-HZO) negative capacitance (NC) FETs is experimentally demonstrated with physical thickness 1.5 nm, SS = 52 mV/dec, hysteresis free (threshold voltage shift = 0.8 mV), and 0.65 nm CET (capacitance equivalent thickness). The NC-FinFET modeling is validated on standard 14nm FinFET. The transient behavior of gate and drain current response are exhibited with triangular gate voltage sweep. The dynamic NC model with compact equivalent circuit for ultra-thin FE-HZO is established with experimental data validation, and estimates the fast response. A feasible concept of coupling the ultra-thin FE-HZO (1.x nm) with NC as gate stack paves a promising solution for sub-10nm technology node.",
author = "Min-Hung Lee and Fan, {S. T.} and Tang, {C. H.} and Chen, {P. G.} and Chou, {Y. C.} and Chen, {H. H.} and Kuo, {J. Y.} and Xie, {M. J.} and Liu, {S. N.} and Liao, {M. H.} and Jong, {C. A.} and Li, {K. S.} and Chen, {M. C.} and Liu, {C. W.}",
year = "2017",
month = "1",
day = "31",
doi = "10.1109/IEDM.2016.7838400",
language = "English",
series = "Technical Digest - International Electron Devices Meeting, IEDM",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "12.1.1--12.1.4",
booktitle = "2016 IEEE International Electron Devices Meeting, IEDM 2016",

}

TY - GEN

T1 - Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs

AU - Lee, Min-Hung

AU - Fan, S. T.

AU - Tang, C. H.

AU - Chen, P. G.

AU - Chou, Y. C.

AU - Chen, H. H.

AU - Kuo, J. Y.

AU - Xie, M. J.

AU - Liu, S. N.

AU - Liao, M. H.

AU - Jong, C. A.

AU - Li, K. S.

AU - Chen, M. C.

AU - Liu, C. W.

PY - 2017/1/31

Y1 - 2017/1/31

N2 - Ferroelectric HfZrOx (FE-HZO) negative capacitance (NC) FETs is experimentally demonstrated with physical thickness 1.5 nm, SS = 52 mV/dec, hysteresis free (threshold voltage shift = 0.8 mV), and 0.65 nm CET (capacitance equivalent thickness). The NC-FinFET modeling is validated on standard 14nm FinFET. The transient behavior of gate and drain current response are exhibited with triangular gate voltage sweep. The dynamic NC model with compact equivalent circuit for ultra-thin FE-HZO is established with experimental data validation, and estimates the fast response. A feasible concept of coupling the ultra-thin FE-HZO (1.x nm) with NC as gate stack paves a promising solution for sub-10nm technology node.

AB - Ferroelectric HfZrOx (FE-HZO) negative capacitance (NC) FETs is experimentally demonstrated with physical thickness 1.5 nm, SS = 52 mV/dec, hysteresis free (threshold voltage shift = 0.8 mV), and 0.65 nm CET (capacitance equivalent thickness). The NC-FinFET modeling is validated on standard 14nm FinFET. The transient behavior of gate and drain current response are exhibited with triangular gate voltage sweep. The dynamic NC model with compact equivalent circuit for ultra-thin FE-HZO is established with experimental data validation, and estimates the fast response. A feasible concept of coupling the ultra-thin FE-HZO (1.x nm) with NC as gate stack paves a promising solution for sub-10nm technology node.

UR - http://www.scopus.com/inward/record.url?scp=85014440880&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014440880&partnerID=8YFLogxK

U2 - 10.1109/IEDM.2016.7838400

DO - 10.1109/IEDM.2016.7838400

M3 - Conference contribution

T3 - Technical Digest - International Electron Devices Meeting, IEDM

SP - 12.1.1-12.1.4

BT - 2016 IEEE International Electron Devices Meeting, IEDM 2016

PB - Institute of Electrical and Electronics Engineers Inc.

ER -