Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs

M. H. Lee, S. T. Fan, C. H. Tang, P. G. Chen, Y. C. Chou, H. H. Chen, J. Y. Kuo, M. J. Xie, S. N. Liu, M. H. Liao, C. A. Jong, K. S. Li, M. C. Chen, C. W. Liu

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    53 Citations (Scopus)

    Abstract

    Ferroelectric HfZrOx (FE-HZO) negative capacitance (NC) FETs is experimentally demonstrated with physical thickness 1.5 nm, SS = 52 mV/dec, hysteresis free (threshold voltage shift = 0.8 mV), and 0.65 nm CET (capacitance equivalent thickness). The NC-FinFET modeling is validated on standard 14nm FinFET. The transient behavior of gate and drain current response are exhibited with triangular gate voltage sweep. The dynamic NC model with compact equivalent circuit for ultra-thin FE-HZO is established with experimental data validation, and estimates the fast response. A feasible concept of coupling the ultra-thin FE-HZO (1.x nm) with NC as gate stack paves a promising solution for sub-10nm technology node.

    Original languageEnglish
    Title of host publication2016 IEEE International Electron Devices Meeting, IEDM 2016
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages12.1.1-12.1.4
    ISBN (Electronic)9781509039012
    DOIs
    Publication statusPublished - 2017 Jan 31
    Event62nd IEEE International Electron Devices Meeting, IEDM 2016 - San Francisco, United States
    Duration: 2016 Dec 32016 Dec 7

    Publication series

    NameTechnical Digest - International Electron Devices Meeting, IEDM
    ISSN (Print)0163-1918

    Other

    Other62nd IEEE International Electron Devices Meeting, IEDM 2016
    CountryUnited States
    CitySan Francisco
    Period2016/12/032016/12/07

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics
    • Electrical and Electronic Engineering
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs'. Together they form a unique fingerprint.

    Cite this