Photovoltaic module fault detection based on a convolutional neural network

Shiue Der Lu, Meng Hui Wang*, Shao En Wei, Hwa Dong Liu, Chia Chun Wu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


With the rapid development of solar energy, the photovoltaic (PV) module fault detection plays an important role in knowing how to enhance the reliability of the solar photovoltaic system and knowing the fault type when a system problem occurs. Therefore, this paper proposed the hybrid algorithm of chaos synchronization detection method (CSDM) with convolutional neural network (CNN) for studying PV module fault detection. Four common PV module states were discussed, including the normal PV module, module breakage, module contact defectiveness and module bypass diode failure. First of all, the defects in 16 pieces of 20W monocrystalline silicon PV modules were preprocessed, and there were four pieces of each fault state. When the signal generator delivered high frequency voltage to the PV module, the original signal was measured and captured by the NI PXI-5105 high-speed data acquisition system (DAS) and was calculated by CSDM, to establish the chaos dynamic error map as the image feature of fault diagnosis. Finally, the CNN was employed for diagnosing the fault state of the PV module. The findings show that after entering 400 random fault data (100 data for each fault) into the proposed method for recognition, the recognition accuracy rate of the proposed method was as high as 99.5%, which is better than the traditional ENN algorithm that had a recognition rate of 86.75%. In addition, the advantage of the proposed algorithm is that the mass original measured data can be reduced by CSDM, the subtle changes in the output signals are captured effectively and displayed in images, and the PV module fault state is accurately recognized by CNN.

Original languageEnglish
Article number1635
Issue number9
Publication statusPublished - 2021 Sept


  • Chaos synchronization detection method
  • Convolutional neural networks
  • Extension neural network
  • Fault detection
  • PV module

ASJC Scopus subject areas

  • Bioengineering
  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology


Dive into the research topics of 'Photovoltaic module fault detection based on a convolutional neural network'. Together they form a unique fingerprint.

Cite this